Optimal Transport-based Loss Functions for Machine Learning

Authors

Bernard Kamsu Foguem
University of Toulouse
Pierre Tiako
CITRD Lab in Oklahoma City
Cheick Abdoul Kadir A. Kounta
University of Science and Techonology of Bamako

Keywords:

Geometry, Neural Network, Deep Learning, WGAN, Intelligent Applications

Synopsis

This is a Chapter in:

Book:
Smart and Sustainable Applications

Print ISBN 978-1-6692-0006-2
Online ISBN 978-1-6692-0005-5

Series:
Chronicle of Computing

Chapter Abstract:

This short paper briefly reports the essential facets of the article (Kamsu-Foguem & al., 2022) presented and discussed as a Journal First paper. The article overviews generative neural networks whose loss functions are based on optimal transport with the Wasserstein distance. This tool of mathematical origin allows interesting automatic learning to be obtained in a reasoning time under Lipschitz constraints. As the proposed studies are based on Wasserstein Generative Adversarial Networks (WGAN), we conclude this report with a short discussion on how WGAN currently supports critical, intelligent applications in our society and nearly all industry sectors.

Keywords:
Geometry, Neural Network, Deep Learning, WGAN, Intelligent Applications

Cite this paper as:
Kamsu-Foguem B., Tiako P.F. & Kounta C.A.K.A. (2024) Optimal Transport-based Loss Functions for Machine Learning. In: Tiako P.F. (ed) Smart and Sustainable Applications. Chronicle of Computing. OkIP. https://doi.org/10.55432/978-1-6692-0005-5_10

Presented at:
The 2023 OkIP International Conference on Automated and Intelligent Systems (CAIS) in Oklahoma City, Oklahoma, USA, and Online, on October 2-5, 2023

Contact:
Bernard K. Foguem
Bernard.Kamsu-Foguem@enit.fr

References

Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais; Mémoires de l'Académie des Sciences de Paris, pages 666–704, 1781.

Kantorovich, L. (1942). On the translocation of masses. C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199–201, 1942.

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014). Generative Adversarial Networks. ArXiv14062661 Cs Stat.

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. ArXiv170107875 Cs Stat

Peyré, G., Cuturi, M. (2019). Computational Optimal Transport: With Applications to Data Science. Foundations and Trends in Machine Learning: Vol. 11: No. 5-6, pp 355-607.

Kamsu-Foguem, B., Msouobu Gueuwou, S.L. & Kounta, C.A.K.A. (2022). Generative Adversarial Networks based on optimal transport: a survey. Artificial Intelligence Review. https://doi.org/10.1007/s10462-022-10342-x,

Bénesse, C., Gamboa, F., Loubes, JM. Boissin, T. Fairness seen as global sensitivity analysis. Machine Learning (2022). https://doi.org/10.1007/s10994-022-06202-y

Lei,K., Mardani,M., Pauly, J.M., & Vasanawala, S.S. (2021). Wasserstein GANs for MR Imaging: From Paired to Unpaired Training. IEEE Transactions on Medical Imaging, vol. 40, no. 1, pp. 105-115, doi: 10.1109/TMI.2020.3022968.

Skandarani, Y., Jodoin, P.M., & Lalande, A. (2023). GANs for Medical Image Synthesis: An Empirical Study. J Imaging. Mar 16;9(3):69. doi: 10.3390/jimaging9030069.

Koohi-Moghadam, M., & Bae, K.T. (2023) Generative AI in Medical Imaging: Applications, Challenges, and Ethics. J Med Syst. Aug 31;47(1):94. doi: 10.1007/s10916-023-01987-4.

Yang, Q., Yan, P., Zhang, Y., Yu. H., Shi, Y., Mou, X., Kalra, M.K., Zhang, Y., Sun, L., & Wang, G. (2018). Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE Trans Med Imaging.Jun;37(6):1348-1357. doi: 10.1109/TMI.2018.2827462.

Chauhan, R., Sabeel, U., Izaddoost, A., & Shah-Heydari, S.(2021) Polymorphic Adversarial Cyberattacks Using WGAN. Journal of Cybersecurity and Privacy. 1(4):767-792. https://doi.org/10.3390/jcp1040037

Wang J.-T., & Wang, C.-H. (2019). High Performance WGAN-GP based Multiple-category Network Anomaly Classification System. In The 2019 International Conference on Cyber Security for Emerging Technologies (CSET), Doha, Qatar, 2019, pp. 1-7, doi: 10.1109/CSET.2019.8904890.

Vo, H.V., Du, H.P. & Nguyen, H.N. (2024). APELID: Enhancing real-time intrusion detection with augmented WGAN and parallel ensemble learning, Computers & Security,

Volume 136, 103567, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2023.103567.

Liu, W., Duan, L., Tang, Y., & Yang, J. (2020). Data Augmentation Method for Fault Diagnosis of Mechanical Equipment Based on Improved Wasserstein GAN. 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan), Jinan, China, pp. 103-111, doi: 10.1109/PHM-Jinan48558.2020.00025.

Li, M., Zou, D., Luo, S., Zhou, Q., Cao, L., & Huaping Liu, H. (2022). A new generative adversarial network based imbalanced fault diagnosis method. Measurement, Volume 194, 111045, ISSN 0263-2241,

https://doi.org/10.1016/j.measurement.2022.111045.

Zhan, L., Xu, X., Qiao, X., Qian, F., & Luo, Q. (2022). Fault Feature Extraction Method of a Permanent Magnet Synchronous Motor Based on VAE-WGAN. Processes. 10(2):200. https://doi.org/10.3390/pr10020200

Wang, Z., Wang, S., Zhou, C., & Cheng, W. (2022). Dual Wasserstein generative adversarial network condition: A generative adversarial network-based acoustic impedance inversion method. GEOPHYSICS 87: R401-R411.

https://doi.org/10.1190/geo2021-0600.1

Ma, X., Liu, Y., Yan, J., & Wang, H. (2023). A WGAN-GP-Based Scenarios Generation Method for Wind and Solar Power Complementary Study. Energies 16(7):3114. https://doi.org/10.3390/en16073114

Optimal Transport-based Loss Functions for Machine Learning

Published

January 27, 2024

Online ISSN

2831-350X

Print ISSN

2831-3496