
 Tiako P.F. (ed) Automated Systems, Data, and Sustainable Computing. Chronicle of Computing. OkIP.

 © 2022 Oklahoma International Publishing https://doi.org/10.55432/978-1-6692-0001-7_9

43

 Blockchain Interoperability Method for the Cross-organizational

Transactions: A Meta-Meta-Model

Ebtehal Y. Nassara*, Iman M. A. Helala, Sherif Mazena

aFaculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt

ABSTRACT

 Nowadays, blockchain systems are attracting attention in both

academic and industry fields. Their main advantages are to their

provided capabilities in security, and immutability. However, these

systems are still immature growth, as there is a lack of templates for

blockchain development. Interoperability can be considered one of the

challenges while developing new blockchain systems, due to the

heterogeneity of the blockchain systems infrastructure, consensus

protocol, privacy level, etc. Although many organizations aim to utilize

blockchain systems, they suffer from the limitations of running cross-

organizational transactions over different blockchain systems. The

current cross-organizational solutions depend on how to make a

connection between the different organizations’ applications to reach

choreography. In this paper, we will address the current

interoperability challenges in blockchain systems and their impact on

the running of cross-organizational transactions. Moreover, we will

illustrate the usage of Model-Driven Engineering (MDE) to model the

different aspects of blockchain systems. Finally, we will present an

MDE-based solution to reach organizational interoperability as a

basis for modeling hybrid applications that can process cross-

organizational transactions.

Keywords: Blockchain, Interoperability, Model-Driven Engineering,

Meta-Meta-Model, Cross-Organizational transaction, Smart

Contracts

I. INTRODUCTION

 Blockchain systems offer new capabilities like
immutability and secure transactions, that trigger most of the
organizations to join blockchain networks or implement their
own blockchain. Although, the implementation of blockchain
networks became trendy, the completely shift for blockchain
systems is not a one fits all solution (Zheng, Z., Xie, S., Dai,
H.N., Chen, X. and Wang, H., 2018). Because of the diversities
that blockchain systems have in implementation like consensus
algorithms, distributed ledger and block structures, smart
contract development, … etc. Also, these systems differ from
the regular systems (object-oriented applications). This leads to
the interoperability problem (Scheid, E.J., Hegnauer, T.,
Rodrigues, B. and Stiller, B., 2019), because of the limitations
of connecting these different blockchain systems together, and
correspondingly connecting them with non-blockchain
systems. Developing blockchain applications is far from easy,
and mistakes may not be fixable.

 Many business processes need collaboration between
different organizations to be completed. These processes are the
basis for systems like supply chain management systems,
healthcare systems, governmental systems, etc. The
collaboration between the previously mentioned systems can be

 reached by applying cross-organizational transactions. Each of
these systems have different systems’ structures; therefore, the
interoperability is a challenge to apply cross-organizational
transaction (Xu, X., Bandara, H.D., Lu, Q., Weber, I., Bass, L.
and Zhu, L., 2021).

In this research, we show how interoperability is a challenge
in blockchain, we describe the different states where cross-
organizational transactions are vital, comparing the main
categories of applying inter-organizational transactions, and
illustrate the usage of MDE techniques and methods in
blockchain systems (Lu, Q., Binh Tran, A., Weber, I., O'Connor,
H., Rimba, P., Xu, X., Staples, M., Zhu, L. and Jeffery, R.,
2021).

 Verifying the correctness of the model can be easier than
the verifying of raw code. Using specific tools can ensure that
the deployed code has not been changed after being derived
from the model. Nevertheless, the code generation tool needs to
be correct. Thus, we investigate the effect of applying MDE to
solve one of the interoperability challenges for the cross-
organizational transaction.

Our research problem is focused on the blockchain inability
to handle the following:

• Integrate blockchain data with the organization's
existing systems.

• Ensure a unified model to exchange data between the
organization applications and the different types of
blockchains (Hsain, Y.A., Laaz, N. and Mbarki, S.,
2021).

The paper is structured as follows: section II defines the
main concepts and background knowledge regarding
interoperability problem in the blockchain field, the current
challenges, the suggested solutions, the different challenges of
cross-organizational transactions and the usage of MDE in
modelling blockchain different aspects, while section III
introduces our suggested hybrid application model. Section IV
materializes related work. Finally, concluding our work and
future work in section V.

II. BACKGROUND

 In this section, we clarify the interoperability problem from
blockchain perspective (sub-section A), and how cross-
organizational transactions can present many challenges to
design and model smart contracts (sub-section B). Finally, we
present the current MDE techniques (sub-section C).

* Ebtehal.yahia@fci-cu.edu.eg

44

A. Blockchain Interoperability

The interoperability can be defined as follows: It is the
capability to make autonomous systems communicate to
exchange information and services, despite having variations in
different parameters (programming language, execution
platform, interface, etc.) (Lohachab, A., Garg, S., Kang, B.,
Amin, M.B., Lee, J., Chen, S. and Xu, X., 2021).

Piking new, innovative blockchain systems enables
developers and users to gain the benefits of state-of-the-art
technology. However, the lack of user experience, at the start,
makes it a risk to use novel blockchain, due to the possibility of
security breaches (Pang, Y., 2020). On the other side, using
mature, reliable blockchains reduces the risk of losses and
failures, because those blockchains pass by different analysis
stages, but they do not have the features of the novel
blockchains.

In some use cases, a different blockchain may be more
suitable because of requirements and/or circumstances change.
In addition, the blockchain system may become obsolete,
attacked, or out of service, in order to handle such cases a user
should be able to save his assets by transferring from a
blockchain to another (Hewett, N., Lehmacher, W. and Wang,
Y., 2019).

Also, it is a challenge to organize transactions from different
blockchains to enable cross-chain distributed applications, if
different blockchains have various properties . Especially if we
try to revert a transaction that depends on another given
different transaction finalities from different blockchains
(Langer, A.M., 2020).

The blockchain interoperability methods were described
from a granularity perspective in the following categories:
(Isolated interoperability, network interoperability, structural
interoperability, semantic interoperability, specification
interoperability, platform interoperability, and organizational
interoperability). Our focus is on the organizational
interoperability as some organizations support blockchain as
their primary technology because it is more secure than other
legacy systems. But they may use various blockchain networks
based on their needs. Hence, they must establish a
communication way to exchange specific information.

B. Cross-organizational Transactions

Several research proposals have demonstrated the
feasibility of designing blockchain-based collaborative
business processes using a high-level notation, such as the
Business Process Model and Notation (BPMN), and thereon
automatically generating the code artifacts required to execute
these processes on a blockchain platform (Xu, X., Bandara,
H.D., Lu, Q., Weber, I., Bass, L. and Zhu, L., 2021).

lack of appropriate inter-blockchain communication limits
the adoption of blockchain. Blockchain technology could
become a reasonable solution for most systems if it can scale
and communicate with other systems. That makes the need to
have a mechanism that would connect with multiple entities’
blockchain systems without any intermediary or broker. At the
same time, it’s required to preserve the property of trust and
integrity for each blockchain (Pillai, B., Biswas, K. and
Muthukkumarasamy, V., 2020).

The usage of blockchain in cross-organizational
transactions is mainly for reaching choreography between
different organizations. The applying of blockchain in such a
system is to enact choreographies in a trust-less environment
(Lichtenstein, T., Siegert, S., Nikaj, A. and Weske, M., 2020).
The presented solutions utilize the model-driven concepts to
use the BPMN choreography model and generate smart
contracts code, for example ChorChain system as presented in
(Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B.
and Tiezzi, F., 2020). Another perspective is to use blockchain
as a software connector as in (De Sousa, V.A. and Corentin, B.,
2019) to help organizations integrating the IT systems they use
to support business processes. Its main limitation is the lack of
integrated methodology that combine a consistent set of models
to design and implement software connectors relying on
blockchain to support the integration of IT systems used for
cross-organizational BPs.

One of the proposed systems for solving these problems is
the Ethereum-based process execution framework for cross-
organizational process collaborations. Smart contracts are used
as a mechanism to enforce a trusted and immutable process
flow making the need for a TTP (Trusted Third Party) obsolete
(Heine M, Poustcchi K, Krasnova H, Klinger P, Bodendorf
F.2020).

The previously presented solutions are suitable for handling
the collaboration between different organizations using a
blockchain system. However, to the best of our knowledge,
there are no trials to model a design for the organization
application itself, which is called organizational
interoperability (Section II). It is important to model
organizations’ systems that can be used to join blockchain
networks.

C. Model-Driven Engineering Techniques

Model-driven engineering (MDE) is a software engineering
methodology using models with various views and levels of
abstraction for different purposes during software development.
Models with a low level of abstraction can directly generate
software production code, while those with a high level of
abstraction can provide guidance and even support system
analysis before implementation. MDE proposes a high level of
abstraction representation to address heterogeneity and system
complexity (Hsain, Y.A., Laaz, N. and Mbarki, S., 2021).

MDE is very useful for giving standards to software
building. It also presents automated verification and analysis
tools, improved development productivity, and guaranteeing
compliance through correct design (Wöhrer, M. and Zdun, U.,
2020).

MDE is considered one of the most used techniques for
solving software modelling problems. Hence, it’s heavily used
for modelling and designing blockchain systems. We can
categorize the MDE usage in the blockchain field as follows:
model the blockchain network, model the smart contracts,
model the distributed ledger, and model the blockchain
applications (Mao, D., Wang, F., Wang, Y. and Hao, Z., 2019).

1) Model Blockchain Network: In (Abbas, M., Rashid, M.,

Azam, F., Rasheed, Y., Anwar, M.W. and Humdani, M., 2021),

the authors introduce a novel and efficient framework that is

45

based on model-driven architecture. Particularly, a meta-model

(Ecore1
 Model) is defined that contains the concepts of

Blockchain technology. As a part of tool support, a tree editor

(developed using Eclipse Modeling Framework2) and a Sirius-

based graphical modeling tool with a drag-drop palette have

been provided to allow modeling and visualization of simple

and complex blockchain-based scenarios for security labs in a

very user-friendly manner. A Model to Text (M2T)

transformation code has also been written using Acceleo3

language that transforms the modeled scenarios into java code

for blockchain applications.

2) Model Smart Contracts: Due to the conceptual

discrepancy between contractual clauses and corresponding

code, it is hard for domain stakeholders to easily understand

contracts, and for developers to write code efficiently without

errors (Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X. and

Wang, F.Y., 2019.). The design of a domain-specific smart

contract language is based on a higher level of abstraction that

can be automatically transformed to an implementation. In

(Wöhrer, M. and Zdun, U., 2020) a DSL (Domain Specific

Language) was proposed, for generating code to Solidity

language only, which is the Ethereum programming language.

Due to complex of blockchain-based contract execution, the

lack of programming abstractions, and the constant changes in

the platform capabilities and security aspects, it became

difficult to write smart contracts efficiently. The same authors

presented smart contract design patterns and their automated

application, using code generation and the use of a domain-

specific language. But it is only compatible with Ethereum

blockchain networks (Wohrer, M. and Zdun, U., 2020).
The authors of (De Sousa, V.A., Burnay, C. and Snoeck, M.,

2020) proposed B-MERODE as an MDE approach to generate
smart contracts supporting cross-organizational collaborations.
Its target is to develop smart contracts to facilitate the
development and improvement of cross-organizational
business processes. It is considered a novel approach relying on
MDE and artifact-centric business processes to generate smart
contracts supporting cross-organizational collaborations.

3) Model Distributed Ledgers: There is a need to provide

modeling support for the deployment view of distributed ledger

solutions. One of the earlier trials is presented in (Górski, T.

and Bednarski, J., 2020), the authors present how to design

transformation for generating deployment scripts for the R3

Corda Distributed Ledger Technology (DLT) framework with

the ability to switch to another technology. Due to architectural

differences between the distributed ledger platforms, this

solution does not provide a transition to another platform

without changes in the source code of the transformation. For

the same purpose, in (GÓrski, T. and Bednarski, J., 2020) the

authors use a description of the UML2Deployment

transformation of the distributed ledger’s deployment model

into its deployment script. However, the transformation has

been designed for the R3 Corda framework only.

4) Model Blockchain Applications: One of the tracks of

applying MDE in the blockchain area is to model the

blockchain applications. This is important for collaborative

business processes. A typical class of applications uses

blockchain for the management of cross- organizational

business processes as well as assets. However, developing such

applications without introducing vulnerabilities or bugs can add

difficulty for developers, for example the deployed code is

immutable and can be called by anyone with access to the

network. MDE helps in reducing those risks, by combining

proven code snippets as per the model specification, which is

typically easier to understand than source code with all its

implications (Lu, Q., Binh Tran, A., Weber, I., O'Connor, H.,

Rimba, P., Xu, X., Staples, M., Zhu, L. and Jeffery, R., 2021).
There are many trials of applying MDE techniques for

modelling blockchain systems. The usage of domain-specific
language and transformation to smart contract code can be
considered as a gold-mine for blockchain developers. However,
each proposed solution is tightly coupled to the blockchain
platform it is designed for only, for example, Ethereum, Corda,
etc.

III. THE PROPOSED HYBRID APPLICATION MODEL

In software engineering, models can be categorized as
descriptive and prescriptive. The descriptive models are used
for capturing knowledge, for example domain analysis,
requirements, …etc. On the other hand, the prescriptive models
are used as blueprints for system designs, and implementations.
The main purpose of prescriptive models is planning and early
errors discovery. In addition to, blueprints can be used for
partially evaluating systems before realizing. It is one of the
goals of MDE to shift the emphasis from informal, non-binding
models to rigorous, binding models.

As mentioned in Section II, one of the interoperability
methods is the organization interoperability between the
different parts of the same application. In our work, we target
this type of interoperability. In some business cases like supply
chain management systems, the organization may need to join
different networks and share data and processes with different
architectures (Sánchez-Gómez, N., Torres-Valderrama, J.,
García-García, J.A., Gutiérrez, J.J. and Escalona, M.J., 2020).
These networks may be blockchain networks with different
platforms. Therefore, it’s a challenge to make an organization
application that can join different networks with fewer efforts
and changes. This will save cost and development time
(Hamdaqa, M., Metz, L.A.P. and Qasse, I., 2020). The current
solutions for such challenges are to have a meta-model for a
smart contract that can be translated into code. But these models
work on modelling smart contracts only, without taking into
consideration that the organization may need to use its legacy
systems with the blockchains. Based on the multilevel
modelling technique, we created a meta-model for the Class
diagram , it consists of seven classes, we added more details by
defining a class for generalization and another one for the
association relationships. These meta-models represent the
second tier of our architecture in Fig. 1 Meta-Meta-Model
architecture for class diagram and smart contract. Both models
of the second tier (M1) conform to the model of the first tier
(M2). We developed the Meta-Models as Ecore models, that
can help in automating code generation.

46

So, there is a need to have models that can apply for legacy
systems, and new systems like blockchains altogether. The
target of our work is to help the application designer to design
a hybrid application model that can be translated later into
classes, smart contracts, or both.

One of the mapping features of a model is that a model must
have an origin. Therefore, we build a meta-meta-model for
class diagram and smart contracts together to be an origin for
both. We apply the multi-level meta modelling technique
presented in (Lara, J.D., Guerra, E. and Cuadrado, J.S., 2014)
to have different models’ tiers. As mentioned in Fig. 1, the
hierarchy of our design model is as follows: the higher tier will
represent the Meta-Meta-Model of the class diagram and smart
contract (M2 level). The second tier will be the class-diagram
meta-model and the smart-contract meta-model (M1 level), the
models in this tier conform to the M2 tier. The third tier will be
the application model which may conform to the class-diagram
model, smart-contract model, or both. The application model in
M0 conforms to the meta-models in M1.

A. The Meta-Meta Model of Class Diagram and Smart

Contract

The Meta-Meta-Model (Ecore Model) in Fig. 2 consists of
the following classes: the main class is the Classifier class; this
is the main class that the “class diagram” and “smart contract
diagram” will inherit from. The Class here represents the main
component of a class diagram, it is connected to the other main
class diagram components (attribute, operation, parameter).
The SmartContract class represents the modelling class of a
smart contract, it is connected to the relationship through the
classifier class, also connected to events through the
relationship class. The SmartContract class is connected to the
Element class which represents the elements that may exist
inside a smart contract (asset, participant, transaction, ... etc.).
The Event class is an event that may exist in smart contracts.
The part specified with the class diagram is derived from the
model represented in (Li, Y., Gu, P. and Zhang, C., 2014). The
part related to the smart contract model is derived from the

model represented in (Hamdaqa, M., Metz, L.A.P. and Qasse,

I., 2020).

B. The Meta-Model of Class Diagram and Meta-Model of

Smart Contract

Based on the multilevel modelling technique (Lara, J.D.,
Guerra, E. and Cuadrado, J.S., 2014), we created a meta-model
for the Class diagram, cf. Fig. 3 it consists of seven classes, as

Fig 1 Meta-Meta-Model architecture for class diagram and smart contract

Fig 2 Meta-Meta-Model for Class Diagram and Smart Contract

we added more details by defining a class for generalization and
another one for the association relationships. These meta-
models represent the second tier of our architecture in Fig. 1.
Both models of the second tier (M1) conform to the model of
the first tier (M2). We developed the meta-models as Ecore
models, that can help in automating code generation.

C. Supply Chain Management System Example

To illustrate our proposed hybrid application mode, we
present a simple supply-chain-management model to apply our
architecture. Its original class diagram is shown in Fig. 6. It
consists of four classes (order, supplier, product, stock). We
assumed that the supplier information should be recorded in a
blockchain network using a smart contract, this is presented in
Fig. 5, as a hybrid model of the application. Therefore, the
supplier class will be implemented in a smart contract form, as
presented in Fig. 5 block b. Which conforms to the smart
contract meta-model. The other parts of the application
conform to the class-diagram meta-model as shown in Fig. 5
block a. When it comes to the implementation, the application
model in the third tier (M0) will have two interconnected parts;
The first part (that conforms to the class diagram in Fig. 1 M1-
a) will be translated to the specified programming language, the
second part (that conforms to the smart contract in Fig. 1 M1-
b) will be translated to the specified blockchain programming
language.

Fig 3 Class Diagram Meta-Model (M1-a)

47

Fig 4 Smart Contract Meta-Model (M1-b)

IV. RELATED WORK
Most of the presented approaches in supporting cross-

organizational processes view blockchain as a software
connector helping organizations to integrate the IT systems,
they use to support business processes. However, using
blockchain as a connector proposed solutions did not mention
how to design a hybrid application from the beginning to
connect with various blockchain systems (Langer, A.M., 2020),
which is our main emphasize in this paper. The authors of (De
Sousa, V.A. and Corentin, B., 2019) suggested applying a
model-driven engineering approach for the development of
such connectors to design blockchain-based solutions that can
be implemented on various blockchains using the same models.
Based on this paper there is no methodology proposing an
integrated set of models that can be connected to design and
implement blockchain software connectors to support the
integration of existing organizations’ systems used for cross-
organizational business processes. In (Hamdaqa, M., Metz,
L.A.P. and Qasse, I., 2020) the authors presented a feature-
oriented domain analysis approach to investigate the variations
of most three famous blockchain platforms (IBM Hyperledger
Composer, Azure Blockchain Workbench, and Ethereum). In
addition to a well-structured model for smart contract. They
also implemented a framework (iContractML) for transforming
smart contract into code according to the target platform. The
proposed framework models the smart contract based on the
business requirements.

Fig 5 Supply Chain Management System Hybrid Application Model

Fig 6 Supply Chain Management System Class Diagram

The difference between iContractML and our proposed
solution is that iContractML generating model and code for one
purpose application that can be implemented on one of the
targeted blockchain platforms (Hyperledger, Azure, or
Ethereum), but our proposed solution presents a model for
hybrid application that can be composed of different blockchain
smart contract codes at the same time. Based on the survey
published in (Hsain, Y.A., Laaz, N. and Mbarki, S., 2021),
which is a survey about the different MDE techniques for
modelling Ethereum smart contracts, the authors stated that
most research approaches did not mention the meta-model
usage for modelling smart contract concepts. They also stated
that the main category of modelling smart contracts interested
by the behavioral aspect of smart contracts, modelling the
business aspects by using UML state chart, and BPMN models.
The second category focuses on modelling the static aspects
using class diagram.

The third one designs the formal aspect of smart contract

using: finite state machine model (Tolmach, P., Li, Y., Lin,
S.W., Liu, Y. and Li, Z., 2021), OCL (Object Constraint
Language), or ontologies (Syahputra, H. and Weigand, H.,
2019). This study gives the importance of using meta-
modelling for generating smart contract models.

Therefore, gives an advantage for our work as there are few
research trials to use meta-models for modelling smart
contracts.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the different facets of

interoperability in the blockchain area, in addition to the current
solutions of cross-organizational transactions. We showed the
benefits of Model-Driven Engineering and its different
applications for modelling blockchain networks, smart
contracts, distributed ledgers, and blockchain applications.
Applying the multi-level modelling, we developed a meta-
meta-model for modelling smart contracts and class diagrams
to facilitate inheriting the same features as their parent. This led
to modelling a hybrid application that implements and uses the
classes and smart contracts. The developed model is the first
step to have a general model for applying organizational

48

interoperability by having a general meta-meta-model.
Building on this meta-meta-model we can create a
transformation model to transform from class diagram to smart
contract. This can enable developing a DSL to create smart
contracts code automatically.

As future work, we will implement a UML profile [62]
model that will enhance the usage of classes and smart contracts
in the hybrid application. In addition to using this profile model
as a basis for the transformation from classes into smart
contracts.

REFERENCES

Zheng, Z., Xie, S., Dai, H. N., Chen, X., & Wang, H. (2018). Blockchain
challenges and opportunities: A survey. International Journal of Web and

Grid Services, 14(4), 352-375.

Scheid, E. J., Hegnauer, T., Rodrigues, B., & Stiller, B. (2019, October). Bifröst:
a modular blockchain interoperability API. In 2019 IEEE 44th

Conference on Local Computer Networks (LCN) (pp. 332-339). IEEE.

Xu, X., Bandara, H. D., Lu, Q., Weber, I., Bass, L., & Zhu, L. (2021, March).

A decision model for choosing patterns in blockchain-based applications.

In 2021 IEEE 18th International Conference on Software Architecture

(ICSA) (pp. 47-57). IEEE.
Lu, Q., Binh Tran, A., Weber, I., O'Connor, H., Rimba, P., Xu, X., ... & Jeffery,

R. (2021). Integrated model‐driven engineering of blockchain

applications for business processes and asset management. Software:
Practice and Experience, 51(5), 1059-1079.

Hsain, Y. A., Laaz, N., & Mbarki, S. (2021). Ethereum’s Smart Contracts

Construction and Development using Model Driven Engineering
Technologies: a Review. Procedia Computer Science, 184, 785-790.

Lohachab, A., Garg, S., Kang, B., Amin, M. B., Lee, J., Chen, S., & Xu, X.

(2021). Towards interconnected blockchains: A comprehensive review of
the role of interoperability among disparate blockchains. ACM

Computing Surveys (CSUR), 54(7), 1-39.

Pang, Y. (2020). A new consensus protocol for blockchain interoperability
architecture. IEEE Access, 8, 153719-153730.

Hewett, N., Lehmacher, W., & Wang, Y. (2019, April). Inclusive deployment of

blockchain for supply chains. World Economic Forum.
Langer, A. M., Langer, & Wheeler. (2020). Analysis and Design of Next-

Generation Software Architectures. New York: (pp. 149-164). Springer

International Publishing.
Pillai, B., Biswas, K., & Muthukkumarasamy, V. (2020). Cross-chain

interoperability among blockchain-based systems using transactions. The

Knowledge Engineering Review, 35.
Lichtenstein, T., Siegert, S., Nikaj, A., & Weske, M. (2020, June). Data-Driven

Process Choreography Execution on the Blockchain: A Focus on

Blockchain Data Reusability. In International Conference on Business
Information Systems (pp. 224-235). Springer, Cham.

Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., & Tiezzi, F.

(2020, March). Engineering trustable choreography-based systems using
blockchain. In Proceedings of the 35th Annual ACM Symposium on

Applied Computing (pp. 1470-1479).

De Sousa, V. A., & Corentin, B. (2019, May). Towards an integrated
methodology for the development of blockchain-based solutions

supporting cross-organizational processes. In 2019 13th International

Conference on Research Challenges in Information Science (RCIS) (pp.
1-6). IEEE.

Klinger, P., & Bodendorf, F. (2020, March). Blockchain-based Cross-

Organizational Execution Framework for Dynamic Integration of Process
Collaborations. In Wirtschaftsinformatik (Zentrale Tracks) (pp. 1802-

1817).

Wöhrer, M., & Zdun, U. (2020, May). Domain specific language for smart
contract development. In 2020 IEEE International Conference on

Blockchain and Cryptocurrency (ICBC) (pp. 1-9). IEEE.
Mao, D., Wang, F., Wang, Y., & Hao, Z. (2019). Visual and user-defined smart

contract designing system based on automatic coding. Ieee Access, 7,

73131-73143.
Abbas, M., Rashid, M., Azam, F., Rasheed, Y., Anwar, M. W., & Humdani, M.

(2021, April). A Model-Driven Framework for Security Labs using

Blockchain Methodology. In 2021 IEEE International Systems
Conference (SysCon) (pp. 1-7). IEEE.

Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. Y. (2019).

Blockchain-enabled smart contracts: architecture, applications, and future
trends. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 49(11), 2266-2277.

Wohrer, M., & Zdun, U. (2020). From Domain-Specific Language to Code:
Smart Contracts and the Application of Design Patterns. IEEE

Software, 37(5), 37-42.

De Sousa, V. A., Burnay, C., & Snoeck, M. (2020, June). B-MERODE: a model-
driven engineering and artifact-centric approach to generate blockchain-

based information systems. In International Conference on Advanced

Information Systems Engineering (pp. 117-133). Springer, Cham.
Górski, T., & Bednarski, J. (2020). Applying model-driven engineering to

distributed ledger deployment. IEEE Access, 8, 118245-118261.

GÓrski, T., & Bednarski, J. (2020, June). Transformation of the UML
Deployment Model into a Distributed Ledger Network Configuration.

In 2020 IEEE 15th International Conference of System of Systems

Engineering (SoSE) (pp. 255-260). IEEE.
Lu, Q., Binh Tran, A., Weber, I., O'Connor, H., Rimba, P., Xu, X., ... & Jeffery,

R. (2021). Integrated model‐driven engineering of blockchain

applications for business processes and asset management. Software:

Practice and Experience, 51(5), 1059-1079.

Sánchez-Gómez, N., Torres-Valderrama, J., García-García, J. A., Gutiérrez, J.

J., & Escalona, M. J. (2020). Model-Based Software Design and Testing
in Blockchain Smart Contracts: A Systematic Literature Review. IEEE

Access, 8, 164556-164569.
Hamdaqa, M., Metz, L. A. P., & Qasse, I. (2020, October). IContractML: A

domain-specific language for modeling and deploying smart contracts

onto multiple blockchain platforms. In Proceedings of the 12th System
Analysis and Modelling Conference (pp. 34-43).

Lara, J. D., Guerra, E., & Cuadrado, J. S. (2014). When and how to use

multilevel modelling. ACM Transactions on Software Engineering and
Methodology (TOSEM), 24(2), 1-46.

Li, Y., Gu, P., & Zhang, C. (2014, April). Transforming UML class diagrams

into HBase based on meta-model. In 2014 International Conference on
Information Science, Electronics and Electrical Engineering (Vol. 2, pp.

720-724). IEEE.

Tolmach, P., Li, Y., Lin, S. W., Liu, Y., & Li, Z. (2021). A survey of smart
contract formal specification and verification. ACM Computing Surveys

(CSUR), 54(7), 1-38.

Syahputra, H., & Weigand, H. (2019). The development of smart contracts for
heterogeneous blockchains. In Enterprise Interoperability VIII (pp. 229-

238). Springer, Cham.

