
LitP: Language-integrated Tensor Parallelism
Philipp Kramer
Lecturer at OST

Department of Computer Science
Rapperswil, Switzerland

Abstract
LitP, is a new data-parallel programming model for .NET
respectively C#. It has been designed specifically to run data-
parallel calculations in a managed runtime system. It can
be used to solve a wide range of problems. Programs are
described in vectorized form, but abstract from low-level
architectural details of the target hardware. This allows for a
good compromise between simplicity and performance. The
presented library currently targets GPUs and CPUs, but is in
principle well suited to any kind of general purpose, parallel
processing unit.

Keywords: programming model, DSL, SIMD, data-parallel,
data-flow, reactive, GPU, compilation

1 Introduction
This work allows to program GPUs, and in principle also any
other data-parallel hardware, in a clean, concise, high-level,
platform independent programming model not requiring
low-level knowledge of the target hardware. It is a vectorized
programming model, hence this is solved by the programmer.
All other machine-centric features are however abstracted
and do not additionally complicate the high-level source
code. This allows for a good compromise between readability
and performance. The framework also handles necessary
data transfers between host and device as well as garbage
collection on the GPU, which is handled by the .NET GC.
CUDA C[8] and OpenCL[33] are the most popular GPU

programming models. They convey the GPU single instruc-
tion multiple data (SIMD) execution principle directly to the
programmer. In addition to this fundamental requirement,
they also expose many performance-relevant architectural
hardware features that need to be addressed in programming.
While CUDA or OpenCL implementations can be written in
a decent high-level programming language (C++), the code
remains in fact dominated by low-level concerns such as
coalescing, explicit usage of shared memory, warp-thread-
divergence or memory bank conflicts. Writing GPU kernels
by hand is demanding and the reason for numerous publica-
tions on how to solve various specific problems with GPUs.
Furthermore, programming directly in this model also entails
writing quite some boiler-plate code for data management.

In general, there is still a lack of well-performing, easy to
use high-level programming frameworks for SIMD architec-
tures.

The LitP API is similar to the Java streamAPI[28] or .NET’s
LINQ[20]. Although both of the latter frameworks offer par-
allel processing of their streams, they have not been designed
for it from the ground up. The full spectrum of their methods
cannot be mapped to efficient GPU code. Even for frame-
works that can translate a subset of LINQ or the Java Stream
API to efficient GPU code, programmers are not aware of
performance implications from an API standpoint, and they
are likely to produce inefficiently running programs. The set
of LitP methods naturally leads the programmer to formulate
programs that can be well translated to data-parallel archi-
tectures respectively only to use it for suitable applications.
Due to its clean, simple design, the hurdle to use it is low
and makes the GPU a viable option for cases that would
otherwise not be considered. The programming model is
embedded into C# by cross-compiling stream API like meth-
ods with lambda-functions embedded in the host program.
This language embedding also proliferates easy adoption by
programmers. As evidence of the high-level nature of the
programming model and the performance of the compiled
programs, Nvidia CUDA and CPUs are targeted.
The key contribution of this work is the careful design

of a clean, high-level programming model for data-parallel
calculations. The strength of the implementation is optimiza-
tion by inlining as a better alternative to the occasionally
proposed approach to compose or fuse fully optimized GPU
kernels.
After a short overview of related work in section 1.1, we

present the programming model in section 2 by means of
a series of simple examples. Subsequently, we describe the
inner workings of the runtime support in section 3 and eval-
uate the performance of a small number of calculations in
section 4 by comparing their execution time with relevant
benchmark implementations.

1.1 Related work
The most straight-forward approach is to embed the CUDA
C respectively Open CL model as is in a high-level program-
ming language[1, 5, 6, 10, 16, 17]. While this represents a
step in the direction of this proposal, the integration re-
mains low-level on a semantical level, carrying over much

Corresponding Author: philipp.kramer@ost.ch

Tiako P.F. (ed) Intelligent Computing and Consumer Support Applications. Chronicle of Computing. OkIP
© 2023 Oklahoma International Publishing https://doi.org/10.55432/978-1-6692-0003-1_4

 21

Presented at the 2022 OkIP
International Conference
on Advances in High-Performance
Computing (AHPC)
in Oklahoma City, OK, USA, and
Online, on October 3-6, 202

Presented at the 2022 OkIP International Conference
on Advances in High-Performance Computing (AHPC)

in Oklahoma City, OK, USA, and Online, on October 3-6, 2022

of the complexity since the transparency of the GPU archi-
tecture remains. There are also annotation or directive based
C++ centric approaches such as OpenACC[13, 30] and C++
AMP[32] .

The largest family of high-level programming frameworks
that allow targeting GPUs can be subsumed under the terms
algorithm building blocks[4, 19, 21, 26], stream APIs[3, 14,
20, 27] and (reactive) dataflow frameworks[7, 18, 24]. The
most prominent and probably most advanced of these frame-
works is Google’s TensorFlow[2] mainly aimed at large-scale
machine learning; it can however also be used for other
purposes. TensorFlow is a large toolbox that is not quickly
learned and requires expert knowledge when extending it
with functionality that does not come out of the box.

An often used approach in building-block, stream or gen-
eral dataflow frameworks is to compile blocks, operations or
methods individually to highly optimized kernels and then
to fuse a number of them together to optimize GPU global
memory access[11, 25, 29, 31]. Our approach follows quite
an opposite strategy.

A conceptually clean and highliy optimized framework is
Halide[23]. It separates the formulation of what, referred to
as algorithm, from how, referred to as schedule, it is calcu-
lated. Calculations are implicitly happening in a coordinate
system. The algorithm is basically reduced to the formula
describing each result element depending on its position
in the coordinate system. The schedule describes how the
calculation process is organized. This decoupling enables
high performance without sacrificing code clarity. Halide is
rather aimed at parallel programming experts preferring a
high-level programming framework.

Another system that is very advanced and aimed at expert
users is Spiral[12]. It applies sophisticated optimization algo-
rithms and can target a wide range of hardware. It can only
be used to its full extent using a dedicated programming
language. The capabilities and performance properties of the
hardware need to be described in an abstract manner. Also,
programs are formulated very abstract such that different
degrees of freedom are left open allowing the optimization
process to use them according to the hardware’s properties
and capabilities. The system’s power makes however also its
use demanding. There is a language integration into Scala,
but this embedding does not allow using Spiral to its full
extent.

2 Programming Model
2.1 Program structure and language embedding
LitP programs are written mostly in fluent notation. The
selection of API methods follows a main principle: offer as
fewmethods as possible that allow to solve asmany problems
as possible. The methods can be further subdivided into
calculating and restructuring methods. In addition, the way
to domulti-dimensional calculations is viamulti-dimensional

arrays instead of jagged arrays respectively nesting like e.g.
IEnumerable<IEnumerable<T>> in LINQ. All calculations
are side-effect-free, conceptually producing a new result
array from one or more argument arrays, thus all data can
be considered as being immutable. The structure of these
calculations is restricted to a directed acyclic graph (DAG).
A calculation graph can be run on a particular hardware, in
case this target is not the invoking host machine, this implies
automatically transferring arguments and results. Due to the
DAG restriction, LitP programs comprised of a finite number
of methods are conceptually guaranteed to terminate. The
calculation-graph is composed by composing methods via
their arguments and results of type Tensor<T>, in which T
must be a value type.

Tensors represent arguments as well as results of all meth-
ods. In contrast to C#’s IEnumerable<T> interface, there
is no automatic conversion from C# arrays to tensors. This
helps making the programmer aware of possible delay that
can happen when tensors are transferred between host and
device. Instead, a tensor-object representing the array must
be created with the array extension method ToConst(). 1

var a = new int[...];
var t = a.ToConst();

2.2 Methods to define and execute calculations
The method IMap() applies a lambda-function to each ar-
gument element independently producing a tensor with
the result elements. In more formal notation, IMap() de-
scribes for a small number of tensors with associated ar-
rays 𝑎0 to 𝑎𝑛 and a result array 𝑟 a function of the form
∀𝑖 : (𝑎0 [𝑖], ..., 𝑎𝑛 [𝑖]) → 𝑟 [𝑖]. It is permitted to use the same
tensor as argument more than once. The ’I’ in IMap() simply
stands for identity referring to the one-to-one index mapping.
All LitP lambdas are so called C# expression lambdas. As the
term suggests, expression lambdas cannot contain program-
ming constructs like assignments or loops. In addition to
the restrictions imposed by C#, reference types are also not
supported, and function calls are evaluated when defining
the calculation and the returned value will be constant for
the calculation.

Continuing the code above, the elementwise square of an
array is formulated as
var square = t.IMap(v => v*v);

This just represents the calculation, which can subse-
quently be evaluated on a device.
int[] result = GPU.Evaluate(square);

CPU or GPU specify the platform and Evaluate() takes a
tensor as argument, executes the calculation and returns

1All example code is written in C# and each snippet is self-contained, except
for variables that can be defined in preceding code-snippets.

22

λ

λ

λ

λ

λ

λ

0:

1:

2:

3:

4:

5:

Figure 1. VMap method: left is the argument and right the result
array.

the result array. There is a more flexible way to execute
calculations shown in section 2.4.
With multiple arguments, purely fluent notation is not

possible. For these overloads, LitP resorts back to all normal
arguments instead of using one of them as this-parameter;
e.g., adding two tensors together is formulated as
var b = new int[...];
var t2 = b.ToConst();
var sum = Tensor1D<int>.IMap(t, t2, (v, w) => v + w);

Lambdas can use the element’s index with the static prop-
erty Index. This also allows to produce initial argument
arrays directly on the platform without having to transfer
them.
var range = new Tensor1D <int>(length)
.IMap(_ => Index);

The VMap() method combines two elements from the
same argument array. It features an additional offset pa-
rameter (noted 𝑜 in the formula below) that identifies the
argument’s element index relative to the result element.
More formally, VMap() describes a calculation of the form
∀𝑖 : (𝑎[𝑖], 𝑎[𝑖 + 𝑜]) → 𝑟 [𝑖]. The simple function ∀𝑖 : 𝑎[𝑖] =
𝑎[𝑖] + 𝑎[𝑖 + 2] is written as
var r = t.VMap(vs => vs[0] + vs[1], 2);

The lambda describes the value calculation whose argu-
ment is an array containing the element values. The follow-
ing 2-argument represents the offset. vs[0] refers to a[i]
and vs[1] refers to a[i + 2]. VMap() also works with mul-
tiple, possibly negative offsets adding further elements to
the parameter-array. The ’V’ refers to the two-to-one index
mapping as can be seen in figure 1 visualizing the example
code above. The general VMap() method describes a one-
dimensional convolution e.g. with the gauss kernel.
t.VMap(vs =>
0.005980 * vs[0] +
0.060626 * vs[1] +
0.241843 * vs[2] +
0.383103 * vs[3] +
0.241843 * vs[4] +
0.060626 * vs[5] +
0.005980 * vs[6],
1, 2, 3, 4, 5, 6)

λ

λ

λ

λ

λ

λ

0:

1:

2:

3:

4:

5:

Figure 2. Sweep method: the arrays are traversed sequentially.

To arrive at more useful calculations, methods must of
course be composed. The sum of all elements in an array can
for example be calculated with
int len = IntMath.Pow(2, IntMath.Log2(a.Length) + 1);
while (len > 1) {
len /= 2;
t = t
.VMap(vs => vs[0] + vs[1], len)
.Resize(len);

}

Resize() can return a shortened or extended tensor with
the same dimensionality. When evaluated, the calculation
above yields a result array containing a single element with
the sum of all elements.
All elements within array bounds are calculated. For ar-

gument elements outside array bounds the default value
is assumed. This behavior can be overridden using the C#
coalescing operator "??" as used in the following example.
var p = t.VMap(vs => vs[0] * (vs[1] ?? 1), 1);

Numbers can be summed up using the Reduce() method.
Unlike the map-methods, it features a lambda with two scalar
parameters, the first represents a lower or left value and the
second a higher or right value. The framework is free to
choose any tree-topology to aggregate all values represented
by t. Reduce() returns an object of type Tensor0D<T> that
represents a single number.
t.Reduce((l, r) => l + r)

Reduce() is an exception to the general design philosophy:
it is both calculating and restructuring. It is part of the API
for performance reasons, because it allows the framework
to select a reduction strategy that fits the hardware. For
example, an efficient GPU aggregation algorithm for large
arrays must reduce all data in a thread-block down to a single
number and only write back that number to global memory
instead of half the data as shown in the aggregation example
above using VMap().
Sweep() describes a sequential traversal of the tensor ei-

ther in positive, visualized in figure 2, or in negative direction.
A simple example calculating the scan sum is
var r = t.Sweep(vs => vs[0] + vs[1], -1);

23

AHPC’22, November 15–18, 2022, Oklahoma City, USA Philipp Kramer

In general, Sweep() describes a front of one or more ele-
ments traversing a tensor one element at a time. The front
cannot leave out any elements. Using the Sweep() method,
the Fibonacci numbers can be calculated with
var fib = new Tensor1D<int>(length)
.Sweep(vs => (vs[1] ?? 1) + vs[2], -1, -2);

This might not look like a useful GPUmethod at the moment,
but that will become apparent subsequently.

2.3 Methods for multi-dimensional calculations
In addition to the so far presented classes Tensor0D<T>
and Tensor1D<T>, LitP features the classes Tensor2D<T>
and Tensor3D<T> containing the multi-dimensional equiv-
alents of these methods. This multi-dimensional extension
is straight-forward for ToConst(), IMap(), VMap() and
Resize().
In multiple dimensions, there is the additional method

Transpose() that is self-explanatory. Also, in 0 to 2 dimen-
sions there is the Replicate() method that inserts a new
dimension by replicating all values along a new dimension a
particular number of times.

The following example shows how to calculate the squared
distance matrix. The two arrays px and py contain the x and
y coordinates of the points. The inner maps calculate the
squared x and y deltas of the points. The first Replicate()
argument denotes at which position to insert the new di-
mension and is chosen such that all combinations (in fact
twice as many) are generated. The outer IMap() adds them
together.
int[] px = ...;
int[] py = ...;
int len = px.Length;
var tx = px.ToConst();
var ty = py.ToConst();
var dMatrix = Tensor2D<int>.IMap(
Tensor2D <int>.IMap(
tx.Replicate(1, len),
tx.Replicate(0, len),
(a, b) => (a - b)*(a - b)),

Tensor2D <int>.IMap(
ty.Replicate(1, len),
ty.Replicate(0, len),
(a, b) => (a - b)*(a - b)),

(x2, y2) => x2 + y2);

For VMap(), the offsets obviously need to be specified with
the appropriate number of components to calculate e.g. a
two-dimensional box convolution.
var convolution = m.VMap(
vs => Sum(vs) / Count(vs),

(0, 1), (0, 2),
(1, 0), (1, 1), (1, 2),
(2, 0), (2, 1), (2, 2));

This example also demonstrates the usage of the two con-
venience methods Sum() and Count(), which can either be
given the lambda-parameter as argument or any number of
individual argument array elements.
In two dimensions, if one offset is specified for Sweep(),

the front line moves in that direction. In case offsets are

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

Figure 3. steps of a Sweep() calculation front.

provided in both directions, the front moves diagonal as
shown in figure 3 for the sequential steps 1, 2, 3, The same
behavior generalizes to three dimensions, e.g. when offsets in
two directions are given in a three dimensional calculation,
the plane moves orthogonal over the plane shown in figure 3.
The maximum angle between any pair of offsets is 90°, which
is a necessary and sufficient condition that all elements of
the front can be calculated independently and thus in parallel
in each step.
Sweep() can be used for dynamic programming prob-

lems, for example text comparison. The first IMap() creates
a product matrix and sets a 1 at coordinates where the letters
from the first and the second word match. Sweep() sub-
sequently traverses the matrix effectively calculating the
maximal number of matches following any path from the
origin to a particular front element.
var xs = "MZJAWXU".ToIntTensor();
var ys = "XMJYAUZ".ToIntTensor();
var maxMatch = Tensor2D<int>
.IMap(
xs.Replicate(1, b.Length),
ys.Replicate(0, a.Length),
(x, y) => x == y ? 1 : 0)

.Sweep(
vs => Max(vs[0]+vs[3], vs[1], vs[2]),
(-1, -0),
(-0, -1),
(-1, -1));

Max() and Min() are two further convenience methods like
Sum().

The last example in this section is matrix multiplication.
int[,] a = ...;
int[,] b = ...;
var ta = a.ToConst();
var tb = b.ToConst();
var product = Tensor3D<int>
.IMap(
ta.Replicate(1, b.GetLength(1)),
tb.Transpose()
.Replicate(0, a.GetLength(0)),

(a, b) => a*b)
.Reduce((i, o) => i + o),

Multiplication in LitP is conceptually three dimensional
reflecting the fact that this involves 𝑂 (𝑛3) scalar multipli-
cations. The row-index is 0 and the column index is 1. So,

24

the number of columns in a must correspond to the num-
ber of rows in b. Since the size of the IMap() arguments
must be equal, each argument must be extended by the non-
shared dimension of the other. Reduce() then aggregates
the pairwise products along the shared dimension.

2.4 Calculations with multiple results
If the use case has multiple results, the compact Evaluate()
call is not sufficient anymore; instead, an Evaluation ob-
ject can be created. All calculation result tensors need to be
passed to its constructor. Subsequently, the calculation is
triggered and the results can be retrieved using the Get()
method. The evaluation is pull-based, meaning that only cal-
culations are performed whose result is directly or indirectly
requested. Calls to Get() are blocking.

The following example calculates the elementwise differ-
ences and their squares, both the intermediate as well as the
end result are used by the host program.

var deltas = t.VMap(vs => vs[1] - vs[0], 1);
var squares = deltas.IMap(v => v*v);
var eval = new CpuEvaluation(deltas, squares);
... = eval.Get(deltas);
... = eval.Get(squares);

The initially introduced Evaluate() call is simply a con-
venience function applying the above for the special case of
one result.
In case of CPU execution, memory is deallocated by the

dotnet garbage collector. LitP can dispose intermediate re-
sults on the GPU automatically as soon as they are not used
anymore because it has the full information about the data-
flow.

3 Compilation and Execution
The runtime support for the execution of LitP programs is
comprised of a just-in-time compilation and an execution
phase. The compilation phase constructs a high-level AST-
like structure using C# reflection of lambda expressions. The
structure contains a node for each method invocation. This
structure is optimized by extensively inlining methods as far
as possible. This is key for GPU performance especially in
this model, because the individual methods are too primi-
tive and would, when compiled to individual kernels, most
often be memory bound. Inlining effectively reduces loads
and stores. All Replicate() and Transpose() methods
are inlined and, because of this, artificially introduced di-
mensionality blow up such as in the matrix multiplication
example is not a performance issue. IMap() is also always
inlined, but VMap() only very limited because there is a
blow up of parameters. This allows e.g. to compile the matrix
multiplication into a single GPU kernel.
The high-level structure is then compiled down to .NET

IL code, which is finally executed. The IL code is of course
different for the CPU and the GPU target. The main purpose

of the CPU implementation is currently to serve as functional
reference and evidence of multi-platform capability.

There is a number of GPU specific optimization techniques
that need to be applied in order to get well optimized kernels.
The current implementation is in that respect very basic
leaving a lot of potential for performance improvements.
Currently, only two GPU specific optimizations are applied,
namely using shared memory and specialized kernels for
inner and boundary regions of the calculated arrays. The
former helps to further reduce GPU main memory access.
The latter uses simplified kernels for inner regions of the
involved arrays. The domain of inner regions is implicitly
defined by the offsets used in the VMap() methods, namely
such that no argument of any inner element is out-of-bounds.
This allows to eliminate boundary checks that are necessary
in the equivalent boundary version of the kernel. Further
(GPU specific) optimization are admittedly also needed to
generate well optimized kernels. The .NET IL code targeting
the GPU is finally just-in-time cross-compiled and executed
using the Alea GPU framework[22].
In the execution phase, the nodes of the optimized struc-

ture are scheduled on the target platform. In case of the
GPU, this includes transferring the data to and from the
device as well as managing the used device memory. Sched-
uling happens fully asynchronously, which is particularly
important for the GPU platform that relies on a well filled
command pipeline to avoid stalls and use the freedom to run
independent calculations in parallel.

4 Evaluation
The evaluation is foremost about validating the program-
ming model with respect to its applicability to a good vai-
ety of problems that can be mapped well to data-parallel
hardware. It is assessed if the generated kernels achieve
reasonable performance of the GPU, i.e., that the optimiza-
tion by inlining is sufficient to achieve this. State-of-the-art
performance cannot be expected sind a number of further
non-trivial, very GPU specific optimizations have not been
implemented. The performance of GPUs depends muchmore
on well optimized code when comparing with CPUs.

Table 1. Used hardware for the performance tests.

hardware property CPU GPU
processor i7-10850H Quadro RTX 5000

cores 6 physical /
12 logical

3072 =
48mp x 64cores

spec. memory data rate 46GB/s 384 GB/s
onchip cache size 12MB 4 MB

The presented performance numbers are put into per-
spective by comparing them to hand written C# code using
Parallel.For, parallel LINQ where applicable and handwrit-
ten CUDA code. The hand-written CUDA code is optimized

25

Table 2. Compute time measurements in ms with input tensors of approx. 1M elements unless otherwise noted.

case C# TPL Parallel LINQ LitP GPU CUDA C
cumulative normal distribution 3.7 11 0.38 0.47
option pricing 0.14 0.21 0.26 0.29
convolution 7.2 n/a 0.14 0.1
power iteration 6.7 n/a 1 to 5.7 2.9
matrix multiplication 630 1400 19 17
electrostatic potential 450 n/a 160 160

to the same degree as LitP to serve as directly comparable
reference. We benchmark only the compute time not includ-
ing memory (de-) allocation and transfer delay for the GPU
platform, because it does anyway only make sense to use
the GPU for less compute intensive tasks when calculation
throughput must be maximized and not delay minimized.
We do not claim that the presented measurements are rep-
resentative for all kinds of computations. In the following
we discuss each of the benchmark programs. The used hard-
ware is sketched in figure 1 and the measured times are
summarized in table 2.
The first case calculates the result of the cumulative nor-

mal distribution function for a number of inputs. It applies
the approximation function described in reference [9] to
each tensor element individually.

The option valuation case prices a single option using the
binomial model. Usually this is performed by building up a
recombining tree of potential stock prices, the underlying of
the option, here in 1’000 steps and then evaluating the tree in
reverse direction to calculate the present value by weighting
the scenarios with corresponding probabilities. To achieve
better performance, the tree is completely factored out into
a sum of 1’000 addends that can be calculated in parallel
and are subsequently summed up. The compute times in
the option valuation case are in the expected range for all
platforms. This application simply does not involve enough
computation for the GPU.

The convolution case simply applies a convolution-kernel
with 16 elements. The dimensionality of the convolution is
not relevant for performance. In this case, the total amount
of calculation is higher than in the preceding case.

Power iteration is a simple algorithm to find the first eigen-
vector of an invertible matrix. The vector can be found by
starting with a random vector and repeatedly multiplying it
with the matrix and normalizing it. To ensure that the times
are comparable, the number of iterations is fixed to 25 and
the length of the vectors is 1’000. In CUDA C, we schedule
all launches in a loop. In LitP we have two implementations,
one generating a completely unrolled dataflow correspond-
ing to CUDA C, and one sending data to the host to allow
for dynamic termination of the loop being the reason for the
time difference.

The matrix multiplication case simply measures one ma-
trix multiplication as defined in section 2.3. Parallel-for per-
forms as expected and parallel LINQ is slower by a factor of
approximately 2, probably because it intermittently gener-
ates data. GPUs are designed for fast matrix multiplications,
which is reflected in the measurement even though the GPU
kernels are simple.
The electrostatic potential calculation case is taken from

the book [15]. It calculates the total the electric field strength
at each point of a 2D grid when a number of electric charges
is placed at arbitrary points in space.

To summarize, LitP compiles GPU code that corresponds
quite well to handwritten unoptimized cuda code. This is
different from and, e.g. in the case of matrix multiplication,
far better than executing a sequence of highly optimized
kernels each corresponding to a single LitP method.

5 Conclusion
This work presents a genuine high-level programmingmodel
that is easy to use and able to describe an interesting range
of data-parallel algorithms that are efficiently translated to
parallel hardware. Using this library, GPU algorithms can be
developed in C# in a fully managed environment.

There are opportunities to extend the programming model
and further GPU specific optimizations would be desirable.
Furthermore, Intel AVX could be supported to have a good
alternative with different performance characteristics. There
is also an opportunity to further improve the memory man-
agement by analyzing the dataflow on tensor level and e.g.
performing calculations in place.

The evaluation shows that for suitable problems, the frame-
work has the potential to perform well and can already, with-
out extensive optimization, speed up calculations using the
GPU instead of the CPU without the usual complexity of
GPU programming.

References
[1] 2016. Aparapi CUDA programming model. http://aparapi.com. [On-

line; accessed 06-April-2021].
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,

26

http://aparapi.com

Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Va-
sudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Pritesh Agrawal. 2012. Parallelizing LINQ Program for GPGPU. (2012).
[4] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick,

and Massimo Torquati. 2012. Targeting distributed systems in fastflow.
In European Conference on Parallel Processing. Springer, 47–56.

[5] Altimesh. 2017. Hybridizer. http://www.altimesh.com/hybridizer-
essentials/. [Online; accessed 06-April-2021].

[6] Anaconda. 2012. Numba. http://numba.pydata.org. [Online; accessed
06-April-2021].

[7] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. 2011. StarPU: a unified platform for task scheduling
on heterogeneous multicore architectures. Concurrency and Computa-
tion: Practice and Experience 23, 2 (2011), 187–198.

[8] John Cheng, Max Grossman, and Ty McKercher. 2014. Professional
CUDA c programming. John Wiley & Sons.

[9] Amit Choudhury. 2014. A simple approximation to the area under
standard normal curve. Mathematics and Statistics 2, 3 (2014), 147–149.

[10] Florent Duguet and Guillaume de Roujoux. 2014. Altimesh Hy-
bridizer™ Enabling Accelerators in. Net and more. In GPU Technology
Conference.

[11] Jiří Filipovič, Matúš Madzin, Jan Fousek, and Luděk Matyska. 2015.
Optimizing CUDA code by kernel fusion: application on BLAS. The
Journal of Supercomputing 71, 10 (2015), 3934–3957.

[12] Franz Franchetti, Tze Meng Low, Doru Thom Popovici, Richard M
Veras, Daniele G Spampinato, Jeremy R Johnson, Markus Püschel,
James C Hoe, and José MFMoura. 2018. SPIRAL: Extreme performance
portability. Proc. IEEE 106, 11 (2018), 1935–1968.

[13] K Gregory and A Miller. 2012. C++ AMP: Accelerated Massive Paral-
lelism with Microsoft Visual C++, Published with the authorization of
Microsoft Corporation by O’Relly Media.

[14] Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar.
2015. Compiling and optimizing java 8 programs for gpu execution. In
2015 International Conference on Parallel Architecture and Compilation
(PACT). IEEE, 419–431.

[15] David B Kirk and W Hwu Wen-Mei. 2016. Programming massively
parallel processors: a hands-on approach. Morgan kaufmann.

[16] Andreas Kloeckner. 2009. PyCUDA. https://documen.tician.de/
pycuda/. [Online; accessed 06-April-2021].

[17] Andreas Kloeckner. 2009. PyOpenCL. https://documen.tician.de/
pyopencl/. [Online; accessed 06-April-2021].

[18] Philipp Kramer, Daniel Egloff, and L Blaser. 2016. The alea reactive
dataflow system for gpu parallelization. In Proc. of the HLGPU 2016
Workshop, HiPEAC.

[19] Calle Lejdfors and Lennart Ohlsson. 2007. PyGPU: A high-level lan-
guage for high-speed image processing. In IADIS International Confer-
ence Applied Computing 2007. 66–81.

[20] Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. Linq: recon-
ciling object, relations and xml in the. net framework. In Proceedings
of the 2006 ACM SIGMOD international conference on Management of
data. 706–706.

[21] Biagio Peccerillo and Sandro Bartolini. 2018. PHAST-A portable high-
level modern C++ programming library for GPUs and multi-cores.
IEEE Transactions on Parallel and Distributed Systems 30, 1 (2018),
174–189.

[22] Quantalea. [n.d.]. Alea GPU. https://developer.nvidia.com/blog/
accelerate-net-applications-alea-gpu/. [Online; accessed 06-April-
2021].

[23] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: a lan-
guage and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. Acm Sigplan Notices 48, 6 (2013),

519–530.
[24] Christopher J Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin,

and Dennis Fetterly. 2013. Dandelion: a compiler and runtime for
heterogeneous systems. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 49–68.

[25] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl,
Mark Dokter, and Dieter Schmalstieg. 2014. Whippletree: Task-based
scheduling of dynamic workloads on the GPU. ACM Transactions on
Graphics (TOG) 33, 6 (2014), 1–11.

[26] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. 2011. Skelcl-a
portable skeleton library for high-level gpu programming. In 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum. IEEE, 1176–1182.

[27] Nessos Information Technologies. 2014. GpuLinq. https://github.com/
nessos/GpuLinq. [Online; accessed 08-April-2021].

[28] Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft. 2014. Java 8 in
action. Manning publications.

[29] Mohamed Wahib and Naoya Maruyama. 2014. Scalable kernel fusion
for memory-bound GPU applications. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 191–202.

[30] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey.
2012. OpenACC—first experiences with real-world applications. In
European Conference on Parallel Processing. Springer, 859–870.

[31] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yala-
manchili. 2012. Kernel weaver: Automatically fusing database prim-
itives for efficient gpu computation. In 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 107–118.

[32] Erik Wynters. 2016. Fast and easy parallel processing on GPUs using
C++ AMP. Journal of Computing Sciences in Colleges 31, 6 (2016),
27–33.

[33] JY Xu. 2008. OpenCL–the open standard for parallel programming of
heterogeneous systems. (2008).

27

http://www.altimesh.com/hybridizer-essentials/
http://www.altimesh.com/hybridizer-essentials/
http://numba.pydata.org
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://developer.nvidia.com/blog/accelerate-net-applications-alea-gpu/
https://developer.nvidia.com/blog/accelerate-net-applications-alea-gpu/
https://github.com/nessos/GpuLinq
https://github.com/nessos/GpuLinq

	Abstract
	1 Introduction
	1.1 Related work

	2 Programming Model
	2.1 Program structure and language embedding
	2.2 Methods to define and execute calculations
	2.3 Methods for multi-dimensional calculations
	2.4 Calculations with multiple results

	3 Compilation and Execution
	4 Evaluation
	5 Conclusion
	References

