
Tiako P.F. (ed) Intelligent Computing and Consumer Support Applications. Chronicle of Computing. OkIP

 © 2023 Oklahoma International Publishing https://doi.org/10.55432/978-1-6692-0003-1_5

29 Presented at the 2022 OkIP International Conference
 on Software Engineering Research & Development (SERD)

in Oklahoma City, OK, USA, and Online, on October 3-6, 2022

Automatic Test Generation for Microservices Based

on Consumer-Driven Contracts (CDC)

Shaheen Zahedia, Samad Paydarb

Shaheen Zahedi a, Gilan, Rasht, Iran

Samad Paydar b, Khorasan, Mashhad, Iran

ABSTRACT

Microservices offer a shorter time-to-market by improving

productivity with maximizing the automation of the software

development lifecycle. However, when dealing with such systems,

there are important design principles like their solidness and test

coverage, which should be considered to be able to co-operate well in

a distributed environment especially from the architecture level.

However, for the provider of a service, it might be challenging to

maintain the obligations needed by the consumer. Therefore, in this

approach a form of agreement is written by the consumer of the

service, which is called contract. In this paper, a language agnostic,

no-code approach is proposed for conducting the consumer-driven

contract concept, through automatically converting the contracts into

a set of solid test suites, that runs on each deployment. Consequently,

if the service provider alters the returned data in a way that breaks the

expectations of the consumer, this breaking change will be detected

early by running the auto-generated test suites. The proposed

approach also provides an insight for the provider, on how their

service is being used and how changes can affect the consumers. Then

it gets evaluated with a dataset of 56 open-source projects available

on Github which use consumer-driven contract testing. The results

demonstrate that for 56 real source projects, the proposed approach

has been able to generate 450 tests from the contract files in the

sources and 90% of the generated test suites passed.

Keywords: microservices, testing, consumer driven contract testing,

test generation, mutation testing

I. INTRODUCTION

According to research on motivations on migration to
microservice architecture (Taibi, Lenarduzzi, & Pahl, 2017),
Maintainability and scalability were consistently ranked as the
most important motivations, therefore, most of the newly-
migrated systems need to invest their time and effort on
maintainability. In the microservice world, the larger a system
becomes the harder it is for service providers to know how their
service is being used, and the reason is that it is more
complicated with more people making changes to it. In a
distributed environment, due to its distributed nature (Like
transparency, size of the system etc.) understanding and
reaching the actual problem, is difficult. One of the problems we
are trying to address when we use integration tests is exactly this.
Integration testing requires testing against the actual consumer,
but a consumer-driven contract can accomplish such a task
without testing against actual consumers. (newman, 2014)

A Contract is commonly defined as a set of different
properties between the provider and the consumer of a service.
In a broader term, Consumer-Driven Contract (CDC) can be
thought of as a guarantee for the communication layer between
services. Whenever the provider fails to satisfy the expectations
defined by the consumer, the system can accurately exhibit what
was the expectation and what is the actual returned value. In a
way, this method ensures that any pair of consumers and
providers can properly send and receive messages in a well-
defined manner.

In comparison with the related works available in this area,
the proposed approach has the following main advantages:1) No
obligation to know contract's syntax: For creating a contract,
one needs to get familiar with the syntax of writing a contract.
But in the proposed approach this stage is done via interaction
with the user interface. This can remove the need to know the
basic knowledge. 2) Correct syntactical structure: Because
this method is generated automatically, there is no room for
developer mistype and misuse to make any syntactical error. 3)
Platform-Independence: In other approaches, developer needs
to execute project tests to verify the contracts. But here the
verification is done independently via the stand-alone
executable JAR file. 4) Language agnostic: In current
frameworks, because the contract is written and maintained
inside the codebase, one should use different technologies for
different programming languages for example there is Pact JS,
Pact Ruby, etc. But here, there is only one machine generated
contract for all available frameworks, as long as it has a REST
API there is no boundaries. 5) Other extras: The proposed
approach, offers more features than those available in the
market, for example timeout, and there is room for improvement
in features as the framework evolves. The rest of the paper is
organized as follows: Section II briefly discusses the related
work about CDC and test generation techniques. In Section III,
the proposed approach is introduced and explained in detail.
Evaluation of the proposed approach is presented in Section VI,
including result statistics of the evaluation. and finally, Section
V concludes the paper by providing some directions for future
work.

II. RELATED WORKS

Testing and verifying the integration among components of

a software system, is a very vital type of testing. And it is said

in (Fowler, TestPyramid, 2012), (Google, 2015) that we should

a sh.zahedi@mail.um.ac.ir

b s.paydar@um.ac.ir

30

spend most of the time on the integrations between the

components. CDC helps on testing the integration between

components. CDC testing has several advantages when

considering to deal with complex systems with multiple

components involved. A major benefit of this testing method is

if the provider service is updated (Kohei Arai, 2021). According

to (Lehvä, Mäkitalo, & Mikkonen, 2019) CDC test is also

efficient of detecting integration defects. With all the benefits,

as it's said in (Muhammad Waseem, 2021) the most rarely used

strategy for testing microservices is CDC. In this approach the

provider and consumer should consistently be in touch with each

other, any breaking changes from consumer and provider is

recognized early in the production, therefore with CDC the

effort and the maintenance can be greatly reduced. Especially as

the interaction between microservices evolves and the system

grows bigger.

A. Mutation Testing

Mutation testing creates modified version of the program (in

this case the contract) called mutants, it is done via mutation

operators to simulate the fault or lead the tester to edge cases.

It is expected for the test suites to fail, then it is said to be killed;

Otherwise, the mutant remains alive and it means the generated

tests were unable to detect the changes. (Alessandro Viola

Pizzoleto, 2019) Which can be quite useful for assessing the

productivity of our generated test. We leveraged mutation

testing as an approach to assess the quality of the generated tests

from the contract. Any mutation testing system represents a set

of mutation operators, each of which is a variation of the

generated tests that mimics the developer's mistakes. (Jacob

Krüger, 2018)

B. End-to-End testing vs Consumer-Driven Contracts

End-to-End (E2E) testing has emerged in the last decade as

a reliable and valuable technique the main objective of E2E was

to make sure that the system has reliable and consistent

behavior. (Cristian Mart´ınez Hern´andez, 2021) but it was

facing some drawbacks, most of them are related to its nature.

Running a full E2E test requires whole system to be up and

running. These drawbacks can be enlisted as 1) being slow 2)

easily breakable 3) E2E tests are expensive and hard to maintain

4) For some tests, it requires dedicated testing environment.

CDC employs modern methods to reduce these drawbacks.

Fig. 1 Comparison between CDC and E2E , from (Google, 2015)

The testing pyramid is an idea, in which tests are classified

based on their granularity and also the reasonable number of test

suites. As it is shown in the testing pyramid (newman, 2014),

there are various approaches to testing the microservices. The

more it goes to the bottom of the pyramid, the number of tests

increases, and as it goes up, the scope of tests increases. CDC

tests lie exactly in the middle, which means they have both

reasonable granularity and scope. Since microservices

communicate over well-defined APIs, the concept of contract

here can be applied very well. With the usage of CDC, we can

test both sides of the service in isolation. With utilizing design-

by-contract paradigm (Meyer, 1992). As Martin Fowler

suggested in (Fowler, Consumer-Driven Contracts: A Service

Evolution Pattern, 2006) contracts should be 1) Closed and

complete: It should contain mandatory elements to support

consumer's expectations. 2) Singular and non-authoritative:

From the business functionality point of view, they should be

singular and non-authoritative because they come from the

union of existing consumer expectations (the provider does not

know what consumer it's talking to). 3) Bounded stability and

immutability: A consumer-driven contract should be stable in

the sense that, we can determine the validity of a contract

according to a specified set of contracts. And it should be

immutable, meaning that the result cannot change with the

manipulation of time and space.

Moreover, here we determine a set of characteristics in

addition to Martin fowler's statements, 1) Implementation

agnostic: With the right organizational setup, providers and

consumers can talk about expectations without any

implementation-specific knowledge. 2) Quality

characteristics: usually for the teams. It is important to meet

some important quality characteristics like latency and

throughput. To measure provider's quality. 3) Stateful: Over the

conversation between provider and consumer, the consumer

might require the provider to remember its state. It is important

to come up with a solution that can save the state rather than

doing the whole process again to perform each relevant test. 4)

No adverse effect: A test call to an endpoint may produce

undesired harmful effects from the test environment. For

example, suppose a contract is designed for a bank transaction

environment. A test call should not perform any actual call to

the core banking system which causes actual money

transactions. At present, there is little literature providing a

comprehensive view of different aspects of consumer-driven

contract testing. However, currently, there is a number of

frameworks like Pact and Spring Cloud Contract which allow

the concept of CDC tests.

C. Available tools

1) Pact

Currently, Pact is the most widely-used framework for CDC,

it is a code-first tool for testing HTTP and message integrations

using contract tests. Pact uses its DSL to write contracts. Later

it converts the written contract in whatever language (Ruby,

JavaScript, Java, etc.) with its engine into test suites. Another

solution it provides is PactBroker which solves the problem of

maintaining the contract. If the provider and consumer use two

separate repositories, PactBroker provides a mutual space for

them. (Inc., n.d.) The pact framework does its work simply by

following a set of steps. Step one: it sets up an HTTP mock

server using a fluent API, then it runs all the tests. Once the

running is completed, all the interactions are recorded and

written to a contract file, called a pact. This pact file defines a

31

contract that provider and consumer must follow. Step two: It

runs this pact file or the contract and gets a real response from

a real provider. If the provider satisfies the pact file it passes,

otherwise, we are facing a failure. (Alex Soto Bueno, How to

Test Java Microservices with Pact, 2020) (Alex Soto Bueno,

Testing Java Microservices, 2019)

2) Spring cloud contract

The Spring cloud contract is another contract testing

framework provided by Sun Microsystems which of course is

natively supported by JVM. It leverages Wiremock to apply

stubs on the mocked server. It provides test capacities for

messaging. Especially Spring related products like Spring

AMQP, Spring Cloud Stream, etc. (Spring, 2020) Spring cloud

contract (SCC) uses Rest Assured framework to send and

receive REST requests. Here the contract is a pre-defined file

either in Groovy, YAML, or Pact. In order to run the contract

and validate it we need to set up the Spring Cloud Contract

plugin and set the contracts in the proper folder on the provider

side and when we trigger the build the plugin will read the

contracts and generate test classes in the /contracts folder and

then it generates stubs and puts in /stubs folder. These stubs will

be packaged inside a jar file with the suffix stub.jar and the jar

file will run in the package phase of a publish. Both SCC and

Pact are essentially solving the same problem. The main

difference is with Pact definition and validation of the contract

is on the consumer side but SCC defines the contract on the

provider side and if the provider validates then the contract gets

published on the provider side.

III. PROPOSED APPROACH

As of now, the way a consumer-driven contract works is that

after the contract is written, consumer-side developer tries to

implement tests in their own language and framework to verify

its loyalty to the contract. On the other hand, the provider needs

to prove the same thing too. So, they create and maintain two

different codes on potentially two different microservices. This

paper provides an approach which is considerably less

challenging to employ CDC tests. The way it works is that there

are two separate executable files that can run on any machine

with Java Runtime Environment one for the provider and the

other for the consumer. Both take the same contract as input.

The provider uses provider component only and the consumer

does not need to have the provider component. The only tool it

needs to run is the JRE. Then the consumer or provider can be

started with a java -jar consumer.jar or java -jar

provider.jar command. After running it asks for the contract

and all the information will be loaded from the contract.

A. The contract

In the contract we define how the request and response's
body, headers, cookies, request parameters, etc. should look
like. In other sense a contract is generated from the expectations
defined between the two parties. The most essential part of a
contract is the "interaction" which contains a JSON array, each
element represents one network call between the provider and
the consumer. All the generated tests come from this definition.
Each interaction consists of a request and response. TABLE 1
shows the content of a request, the proposed approach uses this

structure to form a request to the mocked server and records the
response.

TABLE 1 CONTRACT REQUEST STRUCTURE

Name Description

Headers
List of key-values, Defines the request

header

Body Defines the body

Params Put request params in the request

Cookies
List of key-values, sends request with

cookies

Data Plain-data, it can be anything of value

ParamRules Set of rules to apply for request params

CookieParams Set of rules to apply for cookies

TABLE 2 also demonstrates the definition of a response which is

used to validate the recorded response.

TABLE 2 CONTRACT RESPONSE STRUCTURE

Name Description

Headers
List of key-values, Defines the response

header

Body Defines the body

BodyRules Set of rules to apply for the returned body

HeaderRules Set of rules to apply for the returned headers

Each rule is a way to define exactly how the data should look

like. And there are three type of rules that can be defined in a

contract. 1) Contains: means that it should contain the string

and the generated tests will pass only if they contain such

sequence of characters. 2) Matches: it takes regular expressions

and checks if the value satisfies the expression or not. 3)

DoesNotMatch: the generated test will only pass if the regular

expression fails to satisfy.

B. The consumer

The consumer, is an executable JAR file (it only needs JRE to

execute) and as it has been pointed out, the consumer takes a

contract as an input, and according to the contract, it is going to

run a mock server. On the consumer-side, a flexible tool for

building mock APIs named Wiremock is leveraged. Wiremock

helps with advanced request matching, dynamic response

templating, recording responses etc. In the proposed approach

there is a module named StubGenerator inside the consumer

component and it is responsible to take an interaction and

transform it to a Wiremock stub for the mock server. On the

consumer-side, it also records all the interactions with the

mocked server. When a network call to the mock server is taken

place, it will print out all the details related to the call. This can

help the developer to decipher, what exactly is happening with

the network call. If it can find the called stub according to the

contract, the server will return the desired output, otherwise, it

will print out the nearest stub match that can be found on the

server. Finally, after running the mock server, the consumer

32

uses the test generator module to generate tests from the

contract. These tests need to be executed to demonstrate that the

system is doing okay. After running the tests, it shows how the

mock server responded to those tests. This feature can come in

handy when there was something wrong with the mock server.

It can be discovered earlier in the production before executing

the tests. Fig. 2 demonstrates with more detail as UML activity

diagram.

Retrie ve Contrac t

Map the con tra c t

text to in-m em ory

m odels

Sca n inte rac t ion s

Gene ra te s tubs

u s ing

StubGene ra to r

Run s e rve r with

the ge nera ted

s tubs

App ly s tubs on

the s e rve r

Fig. 2. Consumer-side workflow

Fig. 3 represents the message in the console, for when the mock
server is ready. It shows exactly the local and external address
of the mock server generated for the user.

C. The Provider

This component also is an executable JAR file and it takes the

contract as an input. It then maps the content of the contract to

an object, which is ready for test generation. This module scans

each specification of the contract and then generates a number

of callbacks. Each of which is a test to be executed. It then

executes the network call with the desired specifications only

once. And then it creates different callbacks on the response. The

result of every callback execution is either true or false which

indicates the result of the test also known as Assert. Fig. 4

illustrates a workflow of the provider.

Re trie ve

Co ntra c t

Ma p e a ch

intera c tion to a

rea d y to te s t

m ode l

Sca n

intera c tion s

P roduc e

c allb ac ks

Exe c ute e a ch

c allb ac k o n the

res po ns e

Exe c ute the

intera c tion

Fo rm a t a nd dis pla y

the s um ma rie s

Map the co n tra c t

text to in-m em o ry

m ode ls

Fig. 4. Provider-side workflow

If the assertion was false the framework shows a detailed

message on how the expectations were and narrows down the

value of the actual response. In the end, it provides a summary

of how many tests are executed and some useful information on

the mutations.

IV. THE TESTING PROCESS

A. Utilizing Continious Integration/Continuous Delivery

An attractive aspect of such approach is the automation. As
the software evolves, each time the code base alters, without the
CI/CD it needs manual deployment and manual running of each
test to make sure that the new change did not break anything.
CI/CD facilitates this process down to a single click after making
any changes in the project. Most CI/CD platforms contains a
series of stages (Sriniketan Mysari, 2020). Each of the stages
includes doing part of the deployment and integration job. Thus,
it can be said that the most essential use of such approach is, as
a CI/CD stage. The idea is that after the application is completely
up and running, we can start running contract tests
automatically. If any of the tests did not pass, we do not proceed
to the next stage of CI/CD.

This way we can ensure that with every deployment, there is

healthy code which is capable of satisfying the contract. As it

is demonstrated in Fig. 5 it can provide a summary, to show the

maintainer, the statistics on the tests. It can be seen in the CDC

SUMMARY section how many tests the proposed approach has

generated from the contract and how good was the new code,

with satisfying the contract. Also, a summary of mutations is

provided below, which can help the user to know the quality of

the generated tests.

Fig. 5. Jenkins CI/CD platform, contract test execution

B. Mutation testing

For assessment of the generated tests, we utilized mutation
testing. Here, mutation testing is a form of testing in which we
change specific components of the contract to ensure the
generated tests will be able to detect the changes. These changes
in the contract are intended to cause errors in the test suites. If
they don't, we will know that the test suite is weak. When all
generated tests pass, we mutate different parts of the contract,
and then we generate tests from the new mutated version. Then
we run all mutations. It is important to note that just like the test
suites, the web call is made only once and all mutations will run
on the recorded request and response.

1) Mutation Engine

Mock server is running! Access URLs:

Local: http://localhost:8080/

External: http://127.0.1.1:8080/

Press CTRL+C to stop

Fig. 3. mock server ready console message

33

 There is JSON structure involved in several places in the

contract for example body, headers, and cookies. We proposed

and implemented an engine that is able to manipulate JSON

structure in various ways. Mutation operators perform the better

part of their job by leveraging this engine. In TABLE 3 we'll

describe each operator involved to manipulate the JSON.

TABLE 3. JSON MANIPULATOR'S ENGINE OPERATIONS

Name Before After

Insert null to array [1 , 2 , 3] [1 , 2 , 3, null]

Empty replace { "x": "hello"} { "x": {}}

Remove an item

from array
[1 , 2 , 3]

[2 , 3]

Add empty object [1 , 2 , 3] [1 , 2 , {}]

Remove a pair { "x" : 0, "y" : 1 } {"x":0}

Change order { "x" : 0, "y" : 1 } { "y" : 1 , "x" : 0 }

Change string { "x" : "a" } { "x" : "b" }

Change numbers {"y" : [1,2,3]} {"y":[99,2,3]}

2) Mutation Operators
The way mutation testing is performed is with the mutation

operators. Each operator acts as a tool to alter the contents of the
contract. Some of these operators engage the mutation engine
mentioned in Mutation Engine section. some of them are
mutated with other methods. For example, the status code
mutation is implemented via changing the status code with a list
of available HTTP status codes. In TABLE 4 a definition of each
operator is listed.

TABLE 4 DEFINITION OF EACH MUTATION OPERATOR

Name Definition
Involves

Engine

Status code
Replaces response status code

with another code.

No

Response body
Applies minor adjustments to
the response body, if it's

defined

Yes

Response header
Alters the response header in
the contract, if there is one

Yes

HTTP Method Changes the HTTP method No

Params
If there's query parameters in

the contract, it mutates them.

Yes

Cookies
If cookies are defined in the

contract.

Yes

3) Equivalent Operators
One of the challenging aspects of producing mutation is the

equivalent operators. An equivalent mutant always produces the
same output as the original program; hence it cannot be told
apart from the original program. For example, on the header part
of the contract. It will make no difference on any server. If you
add an extra header to the request, the response will be the same
without any regard to the extra header added as a mutation.

In the proposed approach some of the survived mutations
were directly the result of this concept. Causing the false belief
in the results of the mutations, that the generated tests are not in
a good quality.

V. EVALUATION

For examining the performance of the proposed approach, in
various contexts and different projects, we have collected
contracts from real-world open-source projects on Github. Here
is how the process went: 1) Hundreds of projects implementing
the CDC have been accumulated. We did this step with utilizing
a section on Github that shoes what other repositories are using
the current repository. 2) With doing this a large number of
projects gathered. Then, the projects with the most Forks and
watches on Github were collected. 3)Then, all the repositories
have cloned and with a bit of exploring in the source code,
contract files for SCC and Pact were collected. 4) Some
contracts were directly supported and some needed to be
converted manually, to a contract that can be read by our
framework. 5) Then, all contracts are executed, one by one and
all results are recorded on separate text files. 6) Then the
recorded results counted and summarized with the help of regex.

As it is exhibited in the Fig. 6, the way it's executed is by
utilizing both consumer and provider. First, we give the
consumer the contract, and it loads up and generates stubs to
make a mock server. Once the mock server is up and running,
the same contract is given to the provider. After running is
finished, the results will be examined carefully. By using this
idea, theoretically, if the system is doing okay, all the tests
should pass and all the mutations should be killed. But in the real
world, it didn't happen, which will be elaborated in the Test
generation section and Fig. 7.

A. Results

After the selection phase of the open-source projects
completed, the tests get classified and executed. Among the
selected projects there were two types of them, one is mostly
used for tutorial and practice purposes and the other, which is
real world project with real-world use. Most of the projects
(about 62%) were real-world projects, and the rest were example
demonstration projects.

Consumer

Provider

Mock server

Send stubs

Expected request

Mock response

Fig. 6. The idea for evaluating the approach

34

1) Contracts
 We could discover 157 contract files out of 56 projects in the
first selection phase. After execution is completed, 104 of the
contracts has made their way to the next phase. And 56 contracts
were rejected in the execution phase for various reasons. The
reasons include unsupported features 14% and invalid selection1
61%.

2) Test generation

Among the contracts described in the Evaluation section,

105 different contracts from available projects have been

collected. On average, it could generate about 3 tests per

contract. And not all of the tests passed, 89% percent of the

generated tests passed, and the rest failed for various reasons,

which will be highlighted in the Fig. 7.

3) Mutation Tests

On average, 93 mutants were generated per contract, and

while the results were almost similar to generated tests,83%of

them have passed. And the reason for 17% failure can partially

be the equivalent operators.

4) Mutation Tests

Judging by the number of survived mutants and where the

survivors mostly are, it can be said that most of the equivalent

operators lie in the header operators, which is well expected.

Adding a new key value to the header cannot make any tests fail

therefore, it cannot make any mutations killed, as it happened

1927 times for the header and only 77 times for the other parts.

VI. CONCLUSION AND FUTURE WORK

Implementing a CDC framework is exhausting work since
various aspects need to be taken into account. And since there
are very few studies available in this context, it is a bit difficult
to find comprehensive information on this matter. In this paper,
a novel approach to implementing CDC proposed and its various
components have been discussed, later it's evaluated with
several open-source contracts available on Github based on their
reputation.

In the future, we plan to finalize the proposed framework, since

further research is needed to make a comprehensive CDC

framework. The priority would be to reduce the number of

failed tests mentioned in the Results section. The other priority

is to achieve what's mentioned in Related Works section,

whichis saving the state and abolishing the side effects of the

web call. And the final priority would be to add new features

like various 'like' operators or supporting file interactions and

also better integration with CI/CD frameworks like Jenkins etc.

Finally, another valuable piece of research that can be done here

is to add a user interface to the process of writing a contract.

With the UI a user can write contracts without the hassle of

knowing the syntax of the contract and it can do so without any

syntactical errors.

VII. REFERENCES

Alessandro Viola Pizzoleto, F. C. (2019). A Systematic Literature Review of

Techniques and Metrics to Reduce the Cost of Mutation Testing.
The Journal of Systems & Software.

Alex Soto Bueno, A. G. (2019). Testing Java Microservices. New York:

Manning.
Alex Soto Bueno, A. G. (2020 , April 06). How to Test Java Microservices

with Pact. Retrieved from

https://blogs.oracle.com/javamagazine/post/how-to-test-java-
microservices-with-pact

Cristian Mart´ınez Hern´andez, A. M.-L. (2021). Comparison of End-to-End

Testing Tools for Microservices: A Case Study. Information
Technology and Systems, 1.

Fowler, M. (2006, June 12). Consumer-Driven Contracts: A Service Evolution
Pattern. Retrieved from

https://martinfowler.com/articles/consumerDrivenContracts.html

Fowler, M. (2012, May 1). TestPyramid. Retrieved from
https://martinfowler.com/bliki/TestPyramid.html

Google, M. W. (2015, April 22). Just Say No to More End-to-End Tests.

Retrieved from https://martinfowler.com/bliki/ContractTest.html
Inc., P. (n.d.). Pact Documentation. Retrieved from https://docs.pact.io/

Jacob Krüger, M. A.‐H. (2018). Mutation operators for feature‐oriented

software product lines. Software: Testing, Verification and
Reliability, 29(1-2), 21.

Kohei Arai, S. K. (2021). On Testing Microservice Systems. Proceedings of

the Future Technologies Conference (FTC) 2020, Volume 3.
Lehvä, J., Mäkitalo, N., & Mikkonen, T. (2019). Consumer-Driven Contract

Tests for Microservices: A Case Study. Product-Focused Software

Process Improvement : 20th International Conference. Barcelona,
Spain.

Meyer, B. (1992). Applying “Design by Contract'. Interactive Software

Engineering, 25(10).
Muhammad Waseem, P. L. (2021). Design, monitoring, and testing of

microservices systems: The practitioners’ perspective. The Journal

of Systems & Software.
newman, S. (2014). Building Microservices desinging find grained systems.

O'Reilly.

Spring. (2020). Spring Cloud Contract. (Sun Microsystems) Retrieved from
https://spring.io/projects/spring-cloud-contract

Sriniketan Mysari, V. B. (2020). Continuous Integration And Continuous

Deployment Pipeline Automation Using Jenkins Ansible.
International Conference on Emerging Trends in Information

Technology and Engineering (ic-ETITE). Engineering and Science.

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, Motivations, and

Issues for Migrating to Microservices Architectures: An Empirical

Investigation. IEEE Cloud Computing, 4(5), 1083 - 1099.

25(33%)

4(5%)

30(40%)

16(21%)

Status Matchers Body Header

Fig. 7. Statistics on failed tests

