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ABSTRACT  

Indoor Positioning Systems have gained significance in numerous 

industrial applications. While state-of-the-art solutions are accurate, 

their reliance on external infrastructures can lead to considerable 

costs, deployment complexities, and privacy concerns, making them 

suboptimal for specific contexts. Recent advancements in machine 

learning have surfaced as a potential solution, leveraging data solely 

from onboard IoT sensors. Nonetheless, the optimal machine learning 

models for IoT's resource constraints remain uncertain. This research 

introduces an indoor positioning system using motion and ambient 

sensors tailored for factories and similar settings with predetermined 

paths. The problem is framed as multivariate time series classification, 

comparing various ML models. A novel dataset simulating factory 

assembly lines is utilized for evaluation. Results demonstrate models 

achieving over 80% accuracy, with 1 Dimensional-Convolutional 

Neural Networks showing the most balanced performance followed by 

Multilayer Perceptrons, considering accuracy, memory footprint and 

latency. Decision Trees exhibit the lowest memory footprint and 

latency, rendering its potential for practical implementation.  

Keywords: Indoor Positioning, Machine Learning, Sensor Fusion, 

Multivariate Time Series Classification  

I. INTRODUCTION  

Indoor Positioning System (IPS) is a technology widely 
adopted in many industries (Farahsari et al., 2022). It is among 
the foremost in technological fronts such as Smart Cities, 
Industrial Internet of Things (Frank, 2022). In these areas, IPSs 
are vital in tracking, navigation, proximity, and inertial 
measurements, enhancing efficiency, accuracy, and safety in 
processes. 

Higher animals naturally navigate and locate themselves 
using cues like geomagnetic fields, celestial bodies, wind 
direction, temperature, scent, and visual landmarks. They form 
mental paths through learning and memory, aiding in path 
finding, recognizing environments, and distinguishing locations. 
This concept can be applied to localizing entities along a 
predetermined path. Processing sensory inputs allows 
estimating the current position over time. This can be perceived 
as a sub-problem of Indoor Positioning. However, unlike the 
conventional IPSs, where precise x-y coordinates are estimated, 

we reframe the problem to determine a relative segment on a 
predefined path.  

Numerous research works address the indoor positioning 
problem from various approaches. These approaches provide 
precise x-y coordinates of estimated locations. Many of these 
methods rely on an external infrastructure for reliability, such as 
(Received Signal Strength Indication) RSSI-based solutions 
needing consistent signal coverage. However, for applications 
involving relative positions, like tracking goods in an assembly 
line, x-y coordinates are less significant. Further, supplementary 
infrastructure deployment is costly and technically challenging, 
such as in tunnels or mining sites. Vision-based methods without 
infrastructure raise privacy concerns. Some methods rely on 
external information, causing accumulated errors like dead 
reckoning's starting point. Furthermore, some methods assume 
Gaussian noise or linear motion dynamics.  

To address these limitations, our research explores learning 
indoor positions from sensor data for Machine learning (ML) 
model execution on low-power devices like microcontrollers. 
We combine inertial sensors (accelerometer, gyroscope, and 
magnetometer) with ambient sensors (pressure, temperature, 
humidity, and spectrum) for this purpose. These sensors' 
recordings form multivariate time series data, fused to derive 
accurate location estimates along a predefined path. The indoor 
positioning task is therefore  formulated as a Multivariate Time 
Series Classification (MTSC) problem. ML is used to extract 
sensor data information without making any assumptions about 
noise or motion dynamics, ensuring accurate functionality 
without prior information. Challenges arise from resource-
constraint hardware and maintaining precision in changing 
environmental conditions. 

The problem generally addressed above could be more 
specifically described using an assembly line in a factory. 
Assembly lines consist of preset routes for time and cost 
optimization. Movement of goods along these routes demands 
real-time tracking. Modern production lines incorporate 
digitization and enterprise resource planning (ERP) systems. 
Especially the process automation in industry 4.0  necessitates 
asset localization in secure factory environments adhering to 
strict privacy protocols. 
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To this end, we evaluate lightweight ML models such as 
Decision Trees (DT), random forests (RF), for constrained 
devices such as low-end Microcontroller Units (MCUs) with 
under 10kB SRAMs (Kumar et al., 2017). Furthermore, we 
explore complex Long Short-Term Memory networks (LSTM) 
for indoor positioning via time series classification (Yu et al., 
2021). Additionally, we employ state-of-the-art time series 
classification benchmark architectures as baselines namely, 
Multilayer Perceptrons (MLP), Convolutional Neural Networks 
(CNN) (Fawaz et al., 2019), to compare the performance with 
the prior mentioned models. 

To the best of our knowledge, this work pioneers 
formulating indoor positioning as an MTSC problem, fusing 
motion and ambient sensors without x-y coordinates for settings 
like factories. It also investigates ML model feasibility given 
hardware constraints to estimate relative position. Furthermore, 
state-of-the-art Deep Neural Network (DNN) models for Time 
Series Classification (TSC) (Wang et al.,_2017; Fawaz et al., 
2019) serve as baselines for the formulated models, using a new 
indoor positioning time series dataset. 

The contributions of this work are as follows. 

• Utilization of motion and ambient sensor measurements 
for entity localization on a known path, encompassing 
indoor and outdoor segments, without requiring external 
infrastructure. The significance and limitations of each 
sensor type are examined. 

• Introducing a novel multivariate time series dataset 
comprising sensor data from IMU, pressure, 
temperature, humidity, and spectrum sensors, collected 
during traversal of three distinct paths. 

• The localization on a known path is treated as an MTSC 
problem. The performances ML models, namely DT, RF, 
MLP, CNN, LSTM in solving it, are compared against 
the baseline models, mainly based on accuracy, memory 
footprint, inference latency. 

The rest of this paper is organised as follows. Section II presents 
the related works. Section III generalizes the indoor positioning 
task as an MTSC problem. Section IV introduces the ML models 
evaluated in this work. Section V describes the novel 
multivariate time series dataset and a case study. Section VI 
presents model evaluations and analysis. Finally, Section VII 
concludes the work. 

II. RELATED WORK 

The existing work on indoor positioning are commonly 
classified technology-wise, technique-wise and algorithm-wise 
(Hayward et al., 2022; Yang et al., 2021; Wu et al., 2018; 
Ouyang & Abed-Meraim, 2022; Sesyuk et al., 2022; Poulose et 
al., 2019; Pascacio et al., 2021). Technology-wise solutions 
encompass satellite-based, radio communication-based, visible 
light-based, inertial navigation-based, magnetic-based, sound-
based, and vision-based methods. However, many solutions in 
this range lack privacy and independence from external 
infrastructure like wireless access points (APs). 

While privacy-centric wireless technology-based 
positioning systems exist (Holcer et al., 2020), they often require 

supplementary infrastructure. For certain applications like 
tracking assembly line goods, relative location matters more 
than precise x-y coordinates. However, these solutions primarily 
focus on determining x-y coordinates. 

Collaborative use of different technologies also exists 
(Pascacio et al., 2021). Magnetic field-based localization 
solutions are infrastructure-independent and privacy-secure, 
offering stability and unique magnetic signals (Chiang et al., 
2020). However, they are sensitive to electromagnetic 
disturbances like motion of metallic structures near 
magnetometers. Hence, the magnetic-field based solutions are 
often fused with other sensors. 

Work classified under technique-wise includes dead-
reckoning, vision analysis, triangulation, fingerprinting and 
proximity-based. The latter three techniques require external 
infrastructure for their operation. Dead-reckoning requires 
external data such as initial coordinates and accumulates error. 
Vision based systems can compromise privacy. 

Algorithm-wise categorizes into least square, maximum 
likelihood, deterministic/probabilistic methods (Pascacio et al., 
2021). Fusion-based methods vary from conventional (least 
squares, maximum likelihood, etc.) to state estimation (hidden 
Markov, Kalman, etc.) and ML (k-nearest neighbors, RF, SVM, 
NN) approaches (Guo et al., 2020). Algorithm-wise 
classification mainly branches to the least square method, 
maximum likelihood method, deterministic or probabilistic 
method (Pascacio et al., 2021). The existing fusion-based 
methods range from conventional (least squares, maximum 
likelihood, maximum a posterior, and minimum mean squares 
error), to state estimate (hidden Markov model, Kalman filter, 
extended Kalman filter, and particle filter), and ML methods (k-
nearest neighbours, RFs), support vector machine, and neural 
networks) (Guo et al., 2020). ML has been applied mainly to 
RSSI and fingerprint-based systems (Guo et al., 2020; Nessa et 
al., 2020). They often assume Gaussian noise and linear motion 
(Nessa et al., 2020).  

III. PROBLEM DEFINITION  

Localization of a moving or stationary asset in production 
lines, factories and warehouses, at a given time is inferred by 
identifying the probable segment of a known path. This can be 
interpreted as a classification problem. As assets traverse the 
path, attached motion and ambient sensors gather periodic 
measurements, forming multivariate time series. These data are 
fed into the edge device for real-time classification. In general 
terms, the problem can be defined as follows.  

Definition 1. Let 𝑃 be a path partitioned into l segments, such 
that P→ [s1, … , sm, … , sl] 𝑇 . For each 𝑚 𝜖 {1, … , 𝑙}  segment 
𝑠𝑚  is uniquely identified by a label 𝑦𝑚   from a set 𝑌𝑃 =
{𝑦1, 𝑦2, … , 𝑦𝑚, … , 𝑦𝑙} of labels of P. 

An asset moves along path 𝑃. The speed and its variations 
remain unknown. Further, the time it takes to complete the path 
differ across instances. Thus, no trivial position-time correlation 
exists. Path 𝑃  has segments for both forward and return 
journeys, resembling a round trip. However, it excludes 
anomalies like extended pauses or deviations from the path, 
which are common in industrial environments. 
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Definition 2. Let 𝑋𝑖  denote a univariate time series of a 
feature 𝑖 , engineered from the recordings of sensor 
measurements, as a result of traversing a complete path 𝑃. An 

observation at a given sampling time 𝑡  is denoted as 𝑥𝑡
𝑖  and 

𝑋𝑖 = [𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑘
𝑖 ]𝑇 , where 𝑘 is the total number of 

observations of time series 𝑋𝑖 . 

Definition 3.  Let there be 𝑛  different features, giving 
distinct univariate time series for a data-collection run along 𝑃. 
Then 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑛]  is then defined as a multivariate 
timeseries for 𝑃. 

Finally, we formally define the problem addressed in this 
work. 

Definition 4. Let 𝑋𝑡 = [𝑥𝑡
1, 𝑥𝑡

2, … , 𝑥𝑡
𝑛] be the observations 

of all features in the feature space, at a given time 𝑡 . The 
problem addressed in this work is to find a function 

𝑓𝑃
𝑗
: {𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑗} → 𝑌𝑃 , that determines the label 𝑦𝑚 of the 

segment in which the object is at time 𝑡 , using time series 
[𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑗] , where 𝑗  is a predetermined window size, 

such that 𝑗𝜖ℤ0
+ , and for 𝑗 ≤ 𝑡 − 1  it holds that 

𝑓𝑃
𝑗
(𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑗) = 𝑦𝑚. 

IV. IPS USING DT, RF, CNN AND LSTM NETWORKS  

In this section, we outline the architectures of the ML models 

employed to learn the function 𝑓𝑃
𝑗
 as defined in Definition 4. We 

use two recently popular time series classification baseline 
models namely, MLP, and Fully Convolutional Networks 
(FCN) (Fawaz et al., 2019; Wang_ et al., 2017). Additionally, a 
tree-based approach, DT with entropy is applied, known for its 
relative simplicity and suitability for low-performance edge 
devices like MCUs. An ensemble approach, RF is also explored. 
Lastly, we assess the dataset's performance using vanilla LSTM, 
bidirectional LSTM (BiLSTM), CNN-1D, and CNN-2D for 
solving the TSC task. For the latter two, we add dense layers to 
further enhance the performance rather than developing it to 
fully convolutional architectures. Detailed model architecture 
descriptions are available in (Hemadasa et al. 2023). 

The runtime environment for many related indoor 
positioning works is resource-constrained (Nessa et al., 2020). 
Thus, optimizing ML models requires considering both 
accuracy and resource usage. Therefore, in this study, we assess 
simpler, lighter models that maintain notable accuracy, aligning 
with the problem defined in Section III. 

V. DATASET DESCRIPTION: MOTION-AMBIENT DATASET  

In this section, we present a use case scenario to validate our 
claims using the novel Motion-Ambient dataset. We simulate a 
practical factory and warehousing scenario within Hamburg 
University of Technology premises. A portable data-logging 
setup gathers IMU, pressure, humidity, temperature, and 
spectrum data along three diverse paths, encompassing indoor 
and outdoor segments. These paths feature various dynamics 
like indoor passages, elevators, ramps, stairs, changing terrain 
roughness (e.g., cobblestone), different lighting conditions, and 
magnetic interference near metal structures, which are often 
encountered in industrial environments. The paths are 

simultaneously annotated with predetermined segments 
(classes) as the setup is transported. 

Motion-Ambient is a time series dataset designed for 
benchmarking indoor localization research. Detail description of 
this dataset and its preprocessing is available in (Hemadasa et al. 
2023).  

VI. RESULTS, ANALYSIS AND DISCUSSION   

In this section, we describe constraints for structuring ML 
models’ architectures. Additionally, we introduce the metrics 
used to compare the results and to derive further insights. 

A. Description of model architectures and their constraints 

 Apart from its use in regression problems, decision trees 
classify data by features, while dense layer networks such as 
MLP do the same and additionally identifying complex, non-
linear patterns. RF is employed for similar purposes, typically 
offering higher accuracy and unbiased predictions compared to 
decision trees, but demanding more computations and memory 
usage. Initially designed to recognize spatial patterns in images, 
CNNs can also be applied to MTS data organized as a 2D heat 
map, enabling them to extract local temporal patterns across 
time and features. The combination of CNNs with dense layers 
simplifies the learned patterns into a classification task. 
Moreover, CNNs generate large feature spaces where dense 
layers learn complex patterns and correlations among these 
features. LSTM models, in contrast, capture long-term 
dependencies between time steps in time series data. This differs 
from CNNs, which identify patterns within local regions of a 
multivariate time series, while LSTMs learn relationships 
among multiple of these regions. Unlike LSTMs, DTs, RFs, and 
MLPs aren't primarily tailored for capturing time correlations in 
data. However, utilizing a time window of data does enhance 
accuracy, indicating their limited capability in detecting patterns 
across time. We consider MLP and FCN models proposed by 
Wang et al. (2017) to benchmark the neural network models that 
we present. 

The timestep window size of j=30 yields the highest 
accuracy out of {10, 20, 30, 40, 50}, for benchmarking models 
MLP and FCN. Above this value, the models tend to overfit, and 
below it, underfitting is observed. This window size is employed 
consistently across all models. Detailed architectural 
justifications are elaborated in (Hemadasa et al. 2023).  

B. Accuracy Metrics 

In this work, along with the ML accuracy-score, we utilize a 
specialized accuracy metric named Loc-score. 

1. Accuracy-score 

ML classification accuracy-score (accuracy) is the ratio of 
correct predictions to total predictions, as shown in equation (1). 
This work equates it to the proportion of sensor samples 
accurately classified against their assigned annotations. 

 

 

However, the labels used here might not entirely align with the 
ground truth due to labeling noise. This is primarily due to the 
sensors' high sampling rates, surpassing human reaction times 

𝐴𝑐𝑐. 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  (1)        
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TABLE I.  ACCURACY-SCORES ACROSS THE ML MODELS. THE HIGHEST ACCURACY CORRESPONDING TO EACH PATH IS HIGHLIGHTED. 

 

 

TABLE II.  LOC-SCORES ACROSS THE ML MODELS. THE HIGHEST LOC-SCORE CORRESPONDING TO EACH PATH IS HIGHLIGHTED. 

 

 

 

 

TABLE III.  MEMORY FOOTPRINT OF THE ML MODELS IN MB. THE BEST MEMORY FOOTPRINT CORRESPONDING TO EACH PATH IS HIGHLIGHTED.. 

 

 

  
and making consistent annotation of path segment transitions 
challenging across data-collection runs. 

To address labeling inconsistencies, Grewe introduces the 

accuracy metric loc-score (Grewe, 2021). 

2. Loc-score 

Loc-score defines a window of timesteps around transitions 
from one segment (considered as a class in this problem) to the 
next, in the true class labels. During the evaluation, predictions 
to either of the two classes, within this window, are considered 
correct, while prediction to other classes are considered 
misclassified. The ratio of the samples consequently correctly 
predicted and the total number of predictions is defined as the 
Loc-score. This can be more formally defined as follows. 

Definition 5.  For a transition from a segment 𝑦𝑚 to 𝑦𝑚+1, 
at a given timestep 𝑡𝑡𝑟, and a defined window size of 2𝜏 + 𝑡𝑡𝑟, 
a classification 𝑦�̂� ,  at time 𝑡, is considered correct only if 𝑦�̂� ∈
{𝑦𝑚 , 𝑦𝑚+1}, such that 𝑡 ∈ [𝑡𝑡𝑟 − 𝜏, 𝑡𝑡𝑟 + 𝜏]. Then,  

 

 

3. Memory Footprint 

The memory footprint of a trained ML model is the memory 
needed to store the network’s parameters including structure, 
trained weights, and biases of all layers. 

4. Inference Latency 

Inference latency is the time taken for a ML model to make a 

prediction based on input data. 

5. Throughput 

Throughput is the prediction rate, i.e., predictions per ms. 

C. Analysis of Results 

1. Accuracy 

Table I and Table II show that the CNN-1D model achieves 
the highest accuracy and loc-score for both path 1 and 2. Path 1 
sees CNN-1D closely followed by RF and MLP models, 
respectively. MLP excels in accuracy for path 3, slightly ahead 
of CNN-1D, while RF lags behind. On path 2, RF's accuracy is 
significantly lower than MLP and CNN-1D, even trailing FCN. 
Following are FCN, BiLSTM, LSTM, and CNN-2D, with 
rankings varying per path. DT maintains the lowest average 
accuracy, except for path 1. 

For j=1, both DT and RF had notably lower accuracy-scores 
(0.7737, 0.7873, 0.8264 and 0.8216, 0.8722, 0.8583 
respectively) and loc-scores (0.7959, 0.7981, 0.8422 and 
0.8483, 0.8901, 0.8732 respectively) for paths 1, 2 and 3 
compared to j=30. This suggests that tree-based models can 
partially capture time correlations despite their design 
limitations. Enhancing feature engineering could further 
improve the accuracy of DT and RF. 

In summary, architectures like MLP, CNN-1D, and RF that 
capture short-to-mid range time dependencies achieve higher 
accuracy. The limited impact of the two LSTM variants on 
classification accuracy suggests that the dataset might lack 
significant long-term patterns they excel at identifying. For 
paths 2 and 3, DT's temporal correlation extraction falls short 
compared to other models in capturing feature dynamics. 

However, the dataset for path 1 has less complex, more 
structured data making it easier for both DT and RF to capture. 
This is evident from the relatively higher accuracy values of DT 
and RF for path 1 compared to the other paths. 

Path MLP FCN DT RF LSTM BiLSTM CNN-1D CNN-2D 

1 0.8848 0.8301 0.8394 0.8977 0.8135 0.8445 0.9105 0.8635 

2 0.952 0.9298 0.8405 0.8946 0.8735 0.8872 0.9544 0.8891 

3 0.9321 0.9185 0.8777 0.9217 0.9116 0.9013 0.9302 0.8939 

Path MLP FCN DT RF LSTM BiLSTM CNN-1D CNN-2D 

1 0.9079 0.8542 0.8529 0.9199 0.827 0.8205 0.9315 0.8367 

2 0.966 0.9465 0.845 0.9108 0.8932 0.9058 0.9679 0.9058 

3 0.9438 0.9312 0.9033 0.935 0.9244 0.9164 0.9416 0.9057 

Path MLP FCN DT RF LSTM BiLSTM CNN-1D CNN-2D 

1 7.72 18.72 0.99 24.65 30.92 75.96 5.37 67 

2 7.63 18.72 0.44 11 30.87 75.74 5.36 66.5 

3 7.65 9.93 0.72 17.98 30.88 75.78 5.35 25.65 

𝐿𝑜𝑐𝑠𝑐𝑜𝑟𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑝𝑒𝑟 𝐷𝑒𝑓. 5)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  (2)        
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TABLE IV.  INFERENCE LATENCY (MS) OF DIFFERENT ML MODELS WITH STANDARD DEVIATION. LOWEST INFERENCE LATENCY FOR EACH PATH IS 

HIGHLIGHTED. 

Path MLP FCN DT RF LSTM BiLSTM CNN-1D CNN-2D 

1 0.053±0.003 0.359±0.012 0.002±0 0.012±0.003 0.375±0.009 0.413±0.028 0.05±0.005 0.263±0.008 

2 0.058±0.009 0.387±0.012 0.002±0 0.007±0.001 0.382±0.017 0.41±0.03 0.05±0.001 0.26±0.011 

3 0.052±0.01 0.208±0.016 0.001±0 0.007±0 0.368±0.009 0.376±0.007 0.05±0.005 0.121±0.013 

TABLE V.  INFERENCE THROUGHPUT OF ML MODELS IN PREDICTIONS PER MS, WITH STANDARD DEVIATION. HIGHEST THROUGHPUT VALUES FOR EACH PATH 

ARE HIGHLIGHTED. 

Path MLP FCN DT RF LSTM BiLSTM CNN-1D CNN-2D 

1 19.03± 1.37 2.79± 0.09 569±77 91.09± 24.69 2.67± 0.07 2.43± 0.15 20.29±2.19 3.81±0.11 

2 17.46±2.24 2.58±0.08 644±35 136.4±9.27 2.62±0.11 2.45±0.16 19.92±0.46 3.85±0.16 

3 19.98±3.24 4.83±0.37 1080±114 147.5±8.49 2.72±0.06 2.66±0.05 20.24±1.59 8.37±0.92 

CNN-1D achieves higher accuracy than CNN-2D across all 
paths, possibly due to architectural enhancements like batch 
normalization, which aids model regularization and accuracy in 
CNN-1D. Moreover, Conv1D's feature extraction might be 
more effective compared to Conv2D. Conv1D's convolution 
along sequential feature vectors could derive more informative 
features than simultaneous convolution across parts of the 
feature space and their temporal dynamics in Conv2D. 

Despite LSTM and BiLSTM being architectures capable of 
extracting complex temporal correlations, they do not produce 
the best results. To understand why, initially, the 
hyperparameters are varied within the limits of a maximum of 3 
layers with 64 cells in each layer and j=30. This does not 
improve accuracy. In conclusion, we are left with several 
reasons such as the dataset having simple temporal complexities, 
the amount of data required for the models to learn being simply 
too small, the time step window size of j=30 being not large 
enough, the lesser number of layers results in a too shallow 
network in the case of BiLSTM, etc., which we do not cover in 
this paper. 

Despite LSTM and BiLSTM's potential for extracting complex 
temporal correlations, the reason for them not yielding optimal 
results could be due to factors like the dataset's simplicity in 
terms of temporal complexities, inadequate data for effective 
learning, the relatively smaller time step window size of j=30, 
and the shallowness of BiLSTM networks due to fewer layers 
might contribute to these results. 

2. Memory Footprint 

Table III shows the notably minimal memory footprint of 
DT across all three paths, significantly surpassing the others. 
Conversely, the BiLSTM model exhibits the highest memory 
usage. Notably, for path 3, the FCN and CNN-2D models have 
reduced memory footprints compared to paths 1 and 2. This 
difference can be attributed to the smaller input feature space of 
path 3 (9), in contrast to the other paths (17), as FCN and CNN-
2D models depend on input feature space size. More details 
about the features are available in (Hemadasa et al. 2023).   

DT models' memory footprint can be accommodated by 
high-end MCUs like ESP32, which has 500kB SRAM and 4MB 
flash memory on average, even without additional compression 
methods such as swapping (Miao & Lin, 2021). Pruning further 
reduces their size, facilitating deployment in highly resource-
constrained MCUs without significant accuracy loss (Kumar et 
al., 2017). In edge ML, the device's size impacts more than the 
model architecture, on the energy budget (Banbury et al., 
2021a). This can reduce energy consumption fitting them well 
for long-term industrial positioning applications. Similarly, 
other DNN models can be adapted for high-end MCUs by 
optimizing for constrained hardware (Banbury et al., 2021b; 
Fedorov et al., 2020), though with potential accuracy trade-offs. 

3. Inference Latency and Throughput 

In this study, inference latency and throughput are evaluated 
on an Intel Core i5-10210U CPU with a base clock of 1.60 GHz, 
which can boost up to 2.10 GHz under load. This system has 16 
GB memory and runs Windows 10. These specifications 
represent the higher end of current edge devices' performance 
spectrum. Prior to each inference run, the device is rebooted and 
only the inferencing application operates in JupyterLab. The 
inference dataset size remains constant at 100,000 inputs for all 
models, with each input consisting of 30 timesteps. The average 
time for this set of predictions is computed to establish the time 
per prediction in milliseconds (ms). Additionally, each model 
undergoes 10 tests, and the mean and standard deviation are 
calculated. 

Tables IV and V show that DT is the fastest model across all 
three paths, significantly outperforming the others. RF comes 
next in terms of speed. CNN-1D and MLP models follow, 
closely trailing each other. Subsequently, CNN-2D model ranks 
higher, followed by FCN and LSTM models with similar latency 
performances. BiLSTM exhibits the slowest speed compared to 
the other models. 

The IMU sensor, with a data sampling rate of 0.041s 
(~24Hz), is the fastest among the sensors in the scenario. All 
assessed models can meet this frequency requirement. This is 
based solely on inference latency, without considering 
additional processing overheads. For the slowest processing, 
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MLP, FCN, DT, RF, LSTM, BiLSTM, CNN-1D, and CNN-2D 
can handle sensor sampling rates of up to 14kHz, 2kHz, 5MHz, 
172kHz, 2kHz, 2kHz, 18kHz, and 3kHz, respectively. Given the 
application's context, all these inference rates surpass the fastest 
sensor rate. Therefore, considering both inference latency and 
throughput, all models can be effectively deployed in the 
described use case scenario using the hardware in these 
experiments. 

Besides model architectures, inference latency and throughput 
significantly rely on hardware characteristics like processor 
speed, memory, operating system, possible accelerator 
hardware, and optimization for deep learning. 

D. Discussion and Future Improvements 

Data drift, a common challenge in ML methods, arises from 
gradual sensor changes or shifts in the environment, like 
modifications in assembly line configurations. Such instances 
necessitate model retraining with fresh data, marking a 
drawback compared to many existing IPSs. This becomes 
limitation for scalability of the proposed approach. 

This work focuses on indoor positioning for assets moving 
along specific paths with variable speeds, completion times, and 
round-trip routes. To refine this, we aim to enhance models' 
accuracy amid environmental anomalies. This involves 
incorporating diverse scenarios like deviations from paths, 
pauses, collisions, and unexpected events, aiming to enhance 
algorithm adaptability, exposing the models to unseen data. 

We plan to enhance the generalizability of the ML models to 
classify common indoor motions like ramps, elevators, and 
turns, broadening their usability with transfer learning, smaller 
datasets, faster training, and better accuracy. MLP and CNN-1D, 
performing consistently well, are already suitable for this 
application. 

Temperature, humidity, and spectral attributes could have 
seasonal effects that could impact classification outcomes. 
However, our dataset lacks this seasonal representation. Hence, 
our current study doesn't address accuracy variations across 
seasons, which will be explored in future work.  

We further intend to assess model performance by deploying 
them on low power and low performance edge devices for real-
time on-site data sensing. 

VII. CONCLUSION 

This paper explores ML with motion and ambient sensors for 
indoor positioning in factories and similar contexts. We 
introduce the new Motion-Ambient dataset containing 
multivariate time series data. Using this dataset, we frame indoor 
positioning as an MTSC problem and assess ML models like 
DT, RF, LSTM, BiLSTM, CNN-1D, and CNN-2D. These 
models are compared to benchmark algorithms MLP and FCN, 
evaluated via accuracy, loc-score, memory footprint, inference 
latency, and throughput. Results indicate accuracy levels 
exceeding 80%, fitting use cases. All models meet latency 
demands. The memory footprint spans 0.5 - 76 MB, with CNN-
1D and MLP performing optimally. Notably, DT and RF's 
memory and latency advantages could be further enhanced with 
manual feature engineering. This study demonstrates ML's 

pplicability to indoor positioning and plans real-world 
deployment in a factory environment. 
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