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ABSTRACT 

In the present era, vast amounts of time series data, particularly in 

biology, require efficient analysis due to high-dimensional datasets 

from advanced technologies. Transforming time series into networks 

and applying community detection methods can uncover dynamic 

patterns as temporal network communities. However, the large size of 

these datasets often extends analysis time. High Performance 

Computing (HPC) addresses this by accelerating traditional 

applications. This article presents an HPC-optimized version of the 

visibility-graph-based temporal community detection method. 

Enhancing the original algorithm with parallel processing, including 

shared memory and message passing models, improves adaptability. 

Experiments using an artificial sine series and two real-world 

datasets—biological time series and power consumption patterns—on 

Clemson's Palmetto Cluster demonstrate significant performance 

improvements and scalability over the original approach.  

Keywords: High Performance Computing, Temporal Series Analysis, 

Visibility Graph, Community Detection 

I. INTRODUCTION  

Temporal data holds substantial value for advancing 
knowledge across various scientific disciplines. In 
environmental studies, the tracking of temporal changes in 
environmental factors plays a pivotal role in climate research 
and disaster prediction. Moreover, temporal data finds 
indispensable applications in diverse domains such as 
epidemiology, transportation planning, climate science, and 
urban development, serving as the foundational framework for 
modeling, prediction, and response to dynamic processes 
(Langran, 1989). The introduction of the visibility graph (VG) 
algorithm (Lacasa et al., 2008) has revolutionized the analysis 
of temporal data by transforming time series into structured 
graphs, thereby facilitating the application of graph algorithms 
to temporal data. Community detection, a fundamental graph 
analysis tool, emerges as a potent instrument for unveiling 
evolving patterns, enhancing comprehension of dynamic 
behaviors, and empowering data-driven decision-making in 
domains characterized by temporal data evolution. However, 
conventional methodologies, while effective in fulfilling their 
intended purposes, were not originally conceived with runtime 
performance optimization in mind. The relentless proliferation 
of time series data, characterized by its burgeoning volume, has 
led to prolonged processing times, impeding research 
endeavors, particularly in temporal community detection. 
Scientific computations traditionally hinge on single-core 

performance, severely limiting their real-time capabilities. 
Furthermore, community detection algorithms confront 
significant challenges amidst the surge in large-scale, intricate 
network data across scientific fields. Massive network data 
forms a large-scale network, composed of billions of nodes and 
edges, which generates models with large amount of super-
parameters and extensive training sets (Jin et al., 2021). The 
TCCD model proposed in (Wang, Jin, Musial, & Dang, 2019) 
and the stochastic model method proposed in (Jin, Wang, Dang, 
He, & Zhang, 2016) train advanced models by applying 
approximation and reduction on the sophisticated network 
structure to keep the training efficiency, leading to the sacrifice 
of modeling accuracy. 

 

Fig. 1. The process of community detection on time series 

High Performance Computing (HPC) accelerates scientific 
computations by utilizing supercomputers and cloud 
computing. Researchers across various fields use parallel 
computing to develop high-performance applications, 
maximizing run-time performance within available resources. 
However, developing mature HPC-based applications is 
complex, requiring deep understanding of parallel program 
behaviors and significant programming expertise. 

In this study, we introduce a parallelized VG-based 
temporal community detection algorithm for time series 
analysis. Parallel processing is incorporated into both the 
conversion of time series to VGs and the community detection 
process. Figure 1 provides an overview of the procedure. We 
enhanced the original Python algorithm by optimizing data 
structures and integrating multiprocessing, shared memory, and 
message passing for parallel processing. Performance 
comparisons between the HPC-optimized and serial versions 
using synthetic and real data demonstrate significant speed 
improvements. 

The paper is organized as follows: Section Ⅱ reviews HPC 
and temporal community detection. Section Ⅲ details the HPC-
optimized algorithm. Section Ⅳ describes the experimental 
setup and presents comparative results. Section Ⅴ concludes 
with future work. 
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II. BACKGROUND 

A. High Performance Computing 

HPC aggregates computing resources for high 
computational capability, solving large problems in science and 
engineering. Traditional applications, often designed serially, 
face performance limitations due to single-CPU restrictions. 
Modern multi-core CPUs and cloud HPC resources address 
these limitations, advancing research in machine learning 
(Ramirez-Gargallo, Garcia-Gasulla, & Mantovani, 2019), 
physics (Jiang,  Liu, & Cheng, 2022), power systems (Wang,  
Jin, Huang, Huang, & Chen, 2022), and biology (Sanbonmatsu, 
& Tung, 2007). 

HPC uses two classical models: data-level parallelism and 
task-level parallelism. Data-level parallelism, often 
implemented with threads and shared memory (e.g., OpenMP 
(Dagum, & Menon, 1998), pthreads (Nichols, Buttlar, & Farrell, 
1996)), performs identical operations on separate data segments. 
GPUs (Luebke, & Harris, 2004) exemplify this model. Task-
level parallelism distributes different tasks across nodes, used in 
MPI (Gabriel et al., 2004), Hadoop MapReduce (Dean, & 
Ghemawat, 2008) and Apache Spark (Apache sparkTM). 
Innovative applications like PETSc (Abhyankar et al., 2018), 
and tools like Python's NumPy (Harris et al., 2020) and Julia 
(Bezanson, 2017) leverage low-level libraries (e.g., (BLAS), 
(LAPACK)) for specialized needs. 

B. Visibility Graph and Temporal Community Detection 

VG transforms time series data into networks, preserving 
essential properties (Lacasa et al, 2008). Nodes represent time 
points, connected if they can be joined by an unobstructed line. 
VGs facilitate diverse applications, such as analyzing human 
behavior in biology (Masoudi-Sobhanzadeh, Gholaminejad,  
Gheisari, & Roointan, 2022), (Kutluana, & Türker, 2024) and 
planning collision-free paths in robotics (Bonin-Font, & 
Burguera, 2020). Variants like weighted and dynamic VGs cater 
to novel applications. 

Community detection identifies clusters within data, 
applicable in fields like biology (Rahnavard et al., 2021), 
computer science (Gasparetti, Sansonetti, & Micarelli, 2021), 
and social science (Guerrero-Solé, 2017). It enhances 
understanding of social networks and improves 
recommendation systems. Advanced methods, such as tensor-
based algorithms (Al-Sharoa, Al-Khassaweneh, & Aviyente, 
2018), track brain network structures over time. 

Despite many VG applications, parallel programming to 
enhance runtime performance is not a primary focus. The 
growing demand for processing intensive tasks calls for more 
efficient programs. HPC empowers researchers and engineers to 
efficiently handle complex scenarios and large datasets, 
enabling real-time applications when necessary. 

III. METHODOLOGY 

In our study, we adapted the serial approach by (Zheng, 
Domanskyi, Piermarocchi, & Mias, 2021) as the foundational 
framework (Zheng, Domanskyi, Piermarocchi, & Mias, 2021) 
which effectively identifies communities within temporal data. 
This method transforms time series data into a VG, then detects 
temporal communities within these graphs. In biology, these 

communities represent groups of time points within a signal that 
likely indicate the same biological state. 

To enhance performance, we integrated shared-memory and 
message-passing models into the algorithm, introducing two-
tiered task-level parallelism for concurrent processing of 
multiple time series. We utilized (Harris et al., 2020) to handle 
dense-matrix-based large data structures, boosting the 
computational efficiency. 

A. The serial method 

The serial method deals with time series data first. It maps 
time series to a “Weighted Dual-Perspective Visibility Graph 
(WDPVG)”. Algorithm 1 describes the process of VG 
construction. The VG is constructed by first representing the 
time series points as N nodes in a network, where nodes i and j 

represent time 𝑡𝑖 and 𝑡𝑗, with intensities 𝑠(𝑡𝑖) and 𝑠(𝑡𝑗). Edges 

are added between node i and j if an intermediate time point k 
has an intensity 𝑠(𝑡𝑘) that satisfies the following conditions for 
natural VG (NVG) and Horizontal VG (HVG) respectively.  

 

When applying weight to the added edge, various choices 
are to be offered including no weight, Euclidean distance, the 
tangent of the view angle, or the time difference, as described 
respectively by (1)-(3) and thus the adjacency matrix is obtained. 

 

Then, the reflected perspective NVG/HVG is constructed by 
reflecting the intensities 𝑆𝑡  across the time axis 𝑆𝑡

′ =  −𝑆𝑡  and 
then repeat the steps mentioned above. To finally get the 
WDPVG, the normal perspective NVG/HVG and reflected 
perspective NVG/HVG is combined by the following criteria: 

 

where 𝐴𝑖𝑗 and 𝐴𝑖𝑗
′  represent the adjacency matrix of the normal 

perspective NVG/HVG and the reflected perspective 
NVG/HVG respectively. 

Algorithm 1 Serial Visibility Graph Creation 

Input: tp: time stamps, data: time series data 

Output: G: the adjacency matrix of VG 

Initialization: G = empty matrix, dim = number of time 

stamps 
 1: for i = 0 to dim do 

2: if i < dim - 1  then 

3: G[i,  i + 1] = G  [i + 1, i]  designated 

value 

4: for j = i + 2 to dim do 

5: if max(data[i +1 : j])<min(data[i], data[j]) 

then 
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6: G [ i ,  j ]  = G [ j ,  i ]    des ignated va lue  

7: e n d  i f  

8: end for 

9: end if 

10:  end for  
 

After constructing the VG, the next steps involve community 
identification and optional merging. The shortest path between 
the VG's initial and final nodes is computed to form the 
community stems, with each node on this path considered a 
community core. Nodes outside this path are assigned to 
communities based on proximity to the stem nodes, using the 
shortest path length. If multiple nodes have identical path 
lengths, they are assigned to the community of the first node in 
the predefined direction. The shortest path lengths for all node 
pairs in the VG are calculated. After community construction, 
an optional merging process may be applied: communities with 
shortest path lengths below a cutoff value are merged, based on 
evaluating path lengths between pairs and selecting the smallest. 
Algorithm 2 provides a brief explanation of the process. 

Algorithm 2 Serial Temporal Community Detection 

Input: G: the adjacency matrix of VG 

Output: Communities: the detected communities from the 

graph 

Initialization: dist = empty_matrix, dim = the dimension 

of the matrix, Communities = empty_set 

1: for i = 0 to dim do 

2: for j = 0 to dim do 

3: d i s t [ i ,  j ]   =  d i s t [ j , i ]  

 D i j k s t r a ( i , j )  
4: e n d  f o r  

5: end for 

6: shortest_path = DijkstraPath(start_node, end_node) 

7: for i = 0 to length_of(shortest_path) do 

8: Communities.append(i:[shortest_path[i]]) 

9: end for 

10: for  i = 0 to dim do 

          if i not in shortest_path then 

12: c_id = min(all pair of Dijkstra(i,v) for v in 

shortest_path) 

13: Communit ie s [c_ id] .app end( i )  

14: e n d  i f  

15: end for 
 

Suppose that V represents the number of the nodes in the 
graph, and E represents the number of the edges, the process of 
building VGs has a time complexity of 𝑂(𝑁3)  and a space 
complexity of 𝑂(𝑁2). In the community detection algorithm, 
finding the shortest path using Dijkstra’s algorithm is an 
𝑂(𝑁𝑙𝑜𝑔𝑁)  process, calculating all pairs of Dijkstra's path 
length cost 𝑁 ∗ 𝑂(𝑁𝑙𝑜𝑔𝑁) time, assigning the nodes into their 
communities costs 𝑂(𝑁2)  time, and the optional merging 
process has a run-time of 𝑂(𝑁2), hence, all the sub processes 

adds up to an 𝑂(𝑁𝑙𝑜𝑔𝑁 + 𝑁2𝑙𝑜𝑔𝑁 + 𝑁2)=𝑂(𝑁2𝑙𝑜𝑔𝑁)  overall 
time complexity. The space complexity is 𝑂(𝑁2) as only the 
adjacency matrix is needed through the whole process. 

It is worth noting that while the accuracy and performance 
of temporal community detection show promise, as 
demonstrated by the author, it is hindered by extended execution 
times. With the ever-increasing volume of accessible data, 
inefficient algorithms can impede progress in research and 
engineering endeavors. To address this challenge, we have 
incorporated HPC techniques into our approach for a faster and 
more efficient data processing. 

B. Parallelization and Implementation for the Serial Version 

Since Python is widely used in scientific research and the 
original algorithm was implemented in Python, we continued 
using Python for our parallel design. Due to Python's Global 
Interpreter Lock (GIL) restricting multithreading, we employed 
multiprocessing as an alternative. The VG computation and 
node allocation involve numerous identical, independently 
executable operations, making the shared-memory model 
suitable. To mitigate slowdowns from atomic operations in 
accessing critical data fields, we also incorporated a message-
passing model. Algorithm 3 includes a load balancer to address 
performance issues from line 5 of Algorithm 1, where the 
workload decreases as the value of i increases, potentially 
causing uneven task distribution. 

Algorithm 3 Parallelized Visibility Graph Creation  

Input: LoadBalancer():function that distribute work, 

worker(chunk):worker function that calculates the as-

signed chunk of the adjacency matrix, tp: time stamps, 

data: time series data 

       num_proc: number of worker processes 

Output: G: the adjacency matrix of VG 

Initialization: G = shared memory block, dim = number 

of time stamps 
1:  chunks = LoadBalancer() 
2:  for i in () to num_proc do  

3: p = new_process(worker, args=(chunks[ i], G)) 

4: p . s t a r t ( )  

5: p . j o i n ( )  
6: end for 

 

In Algorithm 3, the outer loop in line 1 from Algorithm 1 is 
evenly divided among all worker processes to ensure equitable 
task distribution. To further counteract workload imbalances, 
suppose we have a total of n processes with indices ranging 

from 1 to n. Each process is allocated an equal share of 
𝑑𝑖𝑚

𝑛
 

numbers, and each i is assigned to process 𝑝𝑖𝑛𝑑𝑒𝑥  using the 
following equation: 

 

𝐴The adjacency matrix is defined as a NumPy matrix and 
resides within a Python shared memory block. Individual 
processes are initiated as distinct Python interpreter processes, 
each equipped with its own dedicated work list. These 
processes operate concurrently to compute the adjacency 
matrix. For an in-depth understanding of the parallelized 
algorithm, including the load-balancing mechanism, please 
refer to Algorithm 3. 
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In Algorithm 4, we also define the distance matrix as a 
shared NumPy matrix, and the while loop in line 1 of Algorithm 
2 is evenly distributed among the processes. Lines 11 to 15 
introduce a redesigned assignment procedure encapsulated 
within a function. Each process is responsible for handling its 
own chunk of nodes and stores the results in its local memory 
to prevent potential data race issues arising from simultaneous 
writes. Every process is assigned a specific set of nodes and 
concurrently executes the function to allocate nodes to their 
respective communities. Upon completing the computation, the 
results are transmitted to the main process, which consolidates 
them to obtain the outcome. Once all sub-results are received, 
the main process returns. 

Algorithm 4 Parallelized Community Detection  

Input: C: the adjacency matrix of the VG, 

worker_Com(chunk, local):worker function that assign 

nodes to their community, 

num_proc: number of worker processes, 

worker_Dijkstra(chunk, mat): worker function that cal-

culates the Dijkstra's path lengths 

Output: communities: the detected communities from the graph 

Initialization: dist = empty matrix, dim = the dimension 

of the matrix, 

1: chunk = 
𝑑𝑖𝑚

𝑛𝑢𝑚_𝑝𝑟𝑜𝑐
 

2: for i = 0 to num_proc do 

3: p = new_process(worker_Dijk(i*chunk, (i+1)*chunk), 

dist) 

4: p.start() 

5: p.join() 

6: end for 

7: shortest_path = DijkstraPath(start node, end node) 

8: for i = 0 to length_of(shortest_path) do 

9: Communities.append(i:[shortest_path[i]]) 

10: end  fo r   

11: for i = () to num_proc do 

12:  i f  process == 'main '  then  

13:           p = new_process(worker Com(i*chunk,(i+1)*chunk), 

local) 

14:      p . s t a r t ( )  

15:          p.send_to_main(local) 

16:          p . j o i n ( )  

17:  e n d  i f  

18:  end for 

19:  if process == 'main' then 

20:  i = 0  

21:  while i<num_proc do 

22:       local = process.receive()  

23:         Communities.merge(local) 

24:   i + = 1  

25:  end while 

26:  end if 
 

Our approach introduces more efficient parallel procedures 
and leverages NumPy matrices to streamline the code and 

enhance performance compared to the original implementation. 
Assuming a time series length of N and the utilization of 
num_proc processes, Amdahl's law (Amdahl, 1967) indicates 
that the theoretical maximum speedup is: 

 

C. Two-Tiered Parallelism 

While the parallelized algorithm is primarily designed for 
single long time series, scenarios arise where researchers need 
to work with datasets comprising thousands of short time series. 
Algorithms 3 and 4, while capable of significantly accelerating 
the processing of long time series, may incur substantial 
overhead due to process scheduling when applied to numerous 
short time series. If the higher-level task (e.g., executing one VG 
construction and community detection on individual time series) 
remains serial, a challenge persists: resources are not fully 
utilized, and runtime performance remains suboptimal.  

To tackle this issue, we have implemented a two-tiered 

parallelism approach. While the lower-level parallelism 

utilizes Algorithm 3 and Algorithm 4 to accelerate the 

processing of one task, the higher-level parallelism utilized 

message passing model and enables users to concurrently 

process multiple tasks. A master process initiates multiple 

sub-processes to execute higher-level tasks concurrently. Once 

a sub-process completes its task, it sends the partial result 

back to the master program, which aggregates all the partial 

results to derive the comprehensive result. Users can 

determine the number of processes to employ for higher-level 

tasks based on an analysis of which number of processes 

yields the best speedup at the inner level and the available 

core count. For instance, if there are 40 available cores and it's 

determined that using 8 processes provides the optimal 

speedup for a single time series processing task (lower-level 

parallelism), users can opt to employ 5 processes to 

concurrently process 5 tasks (higher-level parallelism). This 

approach further enhances and rationalizes resource utilization 

while enhancing performance gains. Supplementary 

information can be found in Algorithm 5.  
 
Algorithm 5 Parallelized Task Processing 

Input: data: the set of time series. NUM_PROC: number of 

processes, worker(data): the two functions above, 

Output: result: the results 

Initialization: result = empty set, chunks = data divided 

evenly to num.proc chunks. 
   1: if process == main then 

2: for i = 0  to NUM_PROC do 

3:       p = Process(worker(chunks[ i])) 

4:      p . send_to_main()  

5:         p.start()  

6: end for 

7: end if 

8: if process == 'main' then 

9: i = 0 
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10: while i <  num_proc do  
11:    local=process.receive() 

12:  resu l t .merge( loca l )  

13:  i  + = 1  

14:  e n d  w h i l e  

15: end if 
 

IV. EXPERIMENT AND ANALYSIS 

In this section, we present the implementation and 
evaluation of our proposed approaches. The implementation was 
conducted on the Palmetto cluster at Clemson University, 
featuring 34,916 CPU cores, high speed interconnection, and 
large RAM, with over 850 nodes are equipped with NVIDIA 
Tesla GPUs. One of the nodes we used for testing consists of 40 
Intel Xeon Gold 6258R CPUs, each operating at 2.70 GHz, and 
equipped with 128 GB of global shared memory to test single 
long time series. The other node, to support testing multiple time 
series, features 80 Intel Xeon Gold 6138 CPUs running at 2.00 
Ghz with 750 GB of global shared memory. 

We conducted comprehensive tests by comparing the 
performance of the parallelized versions against the original 
serial version. To assess the performance gains effectively, we 
performed tests on both artificial sine data and real-world 
datasets. The sine data comprised 10,000 data points generated 
using Eq.7 and Eq.8, where the “timestamp” ranged from 0 to 
1114π with an increment of 0.35. The first real-world dataset 
was obtained from (Zhou et al., 2019) and contains 10,346 time 
series that containing 152 data points. The second real-world 
dataset was sourced from (Hebrail, & Berard, 2012), where we 
truncate the first 10000 points for efficiently fulfilling the testing 
purpose. 

 

A. Single Long Time Series 

We assessed the speedup achieved by the parallelized VG 
construction process using the sine data and the power data, 
encompassing all four types of graphs. Figure 2 and 3 illustrates 
the runtime, while Table 1 and 2 present speedup metrics for VG 
construction using the same datasets. Notably, our observations 
indicate that more complex graphs benefit to a greater extent 
from parallelization. Moreover, as the dataset size increases, the 
speedup tends to approach linearity. 

Fig. 2. Runtime of VG construction on Sine data 

 

Fig. 3. Runtime of VG construction on Power data 

TABLE I.           SPEEDUP  OF VG CONSTRUCTION  ON SINE DATA 

# of Processes 1 2 4 8 12 16 32 

NVG 1.00 1.97 3.49 5.71 6.87 7.13 6.05 

Dual NVG 1.00 1.98 3.61 6.26 8.03 9.07 6.75 

HVG 1.00 1.96 3.72 6.63 8.53 9.82 16.07 

Dual HVG 1.00 1.98 3.75 6.96 8.89 11.22 17.69 

TABLE II.  SPEEDUP OF VG CONSTRUCTION ON POWER DATA 

# of Processes 1 2 4 8 12 16 32 

NVG 1.00 1.90 3.44 5.61 6.54 6.75 5.48 

Dual NVG 1.00 1.90 3.63 6.18 7.79 8.74 6.07 

HVG 1.00 1.94 3.75 6.92 9.54 11.30 16.57 

Dual HVG 1.00 1.91 3.77 6.81 9.81 11.92 18.16 

 

Table 3 provides insights into the size of dual-perspective 
HVG with distance-based weight, constructed using Algorithm 
\ref{parallel-VG}. The graph from Sine data contains 10000 
nodes and 29961 edges, the graph from (Hebrail, & Berard, 2012) 
contains 10000 nodes and 18841 edges. The 10346 graphs 
generated from (Zhou et al., 2019) consist of 152 vertices with 
edge counts ranging between 82 and 236. We subsequently 
executed Algorithm 4 on the dual-perspective HVG with weight 
attributed as “distance” from both the sine series and the power 
consumption series (Hebrail, & Berard, 2012). The 
corresponding runtime and speedup data are presented in Table 
4, wherein the upper section displays the outcomes pertaining to 
the sine data, while the lower section exhibits the results 
associated with the power consumption data. The results 
indicate that this algorithm demonstrates performance and 
characteristics similar to that of Algorithm 3. 

TABLE III.  SUMMARY OF VGS 

Name # of Vertices # of Edges # of TSs 

Sine Data 10,000 29,961 1 
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Biological 152 82,236 10,346 

Power Consumption 10,000 18,441 1 

 

B. Two-Tiered Parallelism for Multiple Time Series 

To evaluate the performance of our two-tiered parallelism 
approach, we conducted tests using time series data from (Zhou 
et al., 2019). Since a single time series is relatively short, we 
chose to use only 1 process to avoid the overhead from process 
scheduling. Specifically, we ran the VG construction and 
community detection processes with 1 processes executing a 
single task, and 1, 2, 4, 8, 16, 32 processes on the higher-level 
and observed efficient results. Although the overhead hurts the 
performance, a noteworthy speedup is still seen. We also 
examined a dataset comprising 4 time series extracted from the 
head of (Hebrail, & Berard, 2012), with each chunk containing 
10080 data points (as the data is recorded every minute, 10080 
records contains data from a week). Upon testing, we utilized 16 
processes in the lower-level parallelism for a single task to 
achieve a maximum performance, and varied the number of 
processes from 1 to 4 for the higher-level processing and 
achieved promising results (Table 5). These outcomes affirm the 
efficiency of the second-level parallelism: For the data from 
from (Zhou et al., 2019), though the scheduling overhead from 
32 processes reduced the speedup, we still achieve 10.76x 
speedup against the serial version. For the data from (Hebrail, & 
Berard, 2012), While the higher-level parallelism utilizes 3 
processes, the result shows a 3.2x speedup comparing to using 
only 1 processes, and a 34.5x speedup comparing to the serial 
execution (2431.5s upon testing). However, when using 4 
processes, the speedup drops due to the overhead of massive 
process scheduling. 

TABLE IV.  PERFORMANCE SUMMARY OF ALGORITHM 4 ON SINGLE 

LONG TIME SERIES 

# of Processes 1 2 4 8 16 32 

Runtime(s) 315.9 163.6 84.1 44.0 26.1 16.5 

Speedup 1.00x 1.93x 3.76x 7.18x 12.10x 19.15x 

# of Processes 1 2 4 8 16 32 

Runtime(s) 234.9 123.4 64.2 35.8 21.2 14.7 

Speedup 1.00x 1.90x 3.65x 6.56x 11.08x 15.98x 

TABLE V.  PERFORMANCE SUMMARY OF THE TWO-TIERED 

PARALLELISM 

# of Processes 1 2 4 8 16 32 

Runtime(s) 795.6 693.1 411.8 254.2 133.1 73.9 

Speedup 1.00x 1.14x 1.93x 3.24x 5.97x 10.76x 

# of Processes 1 2 3 4 

Runtime(s) 225.8 125.0 70.5 80.9 

Speedup 1.00x 1.81x 3.20x 2.79x 

 

Our validation process included comparisons between the 
results obtained from the proposed parallelized methods and 
those from the original version. Remarkably, the results were 

found to be consistent. For single-long time series, we achieved 
a nearly 7x speedup with 8 processes, with greater 
computational complexity yielding more substantial benefits 
from parallelization. In cases involving datasets containing 
numerous short time series, the two-tiered parallelism exhibited 
remarkable performance improvements. Moreover, for datasets 
featuring a substantial number of mid-sized to huge time series, 
the two-tiered parallelism approach yielded optimal 
performance enhancements. Users can flexibly determine the 
number of processes based on their specific requirements and 
problem domains. 

V. CONCLUSION 

This paper introduces a parallelized approach for VG-based 
community detection applied to time series data. We have 
innovatively incorporated two-tiered parallelism to address a 
broader spectrum of real-world scenarios. Our implementation 
demonstrates commendable performance in terms of execution 
time, without incurring additional memory overhead. 
Furthermore, it exhibits robust scalability as problem sizes 
increase. This work underscores the adaptability of parallel 
programming in computationally intensive applications. 

While parallel applications have brought significant 
advantages in both academic and industrial domains, it is worth 
noting that their successful implementation often demands 
substantial expertise. The intricacies of parallel programming 
can introduce challenges related to debugging and verification. 
Additionally, the task of implementing and comparing the 
performance of diverse parallel APIs to select the most suitable 
one can be labor-intensive. To tackle this problem, our future 
tasks will focus on program verification and automated 
parallelization, with the aim of streamlining the development 
cycle for parallel applications. This will enable a broader 
audience to harness the benefits of parallelization in their 
respective domains. 
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