
 Tiako P.F. (ed) Competitive Tools, Techniques, and Methods. Chronicle of Computing. OkIP. AHPC24#06

 © 2024 Oklahoma International Publishing https://doi.org/10.55432/978-1-6692-0007-9_8

1 Presented at the 2024 OkIP International Conference

 on Advances in High-Performance Computing (AHPC)

in Oklahoma City, OK, USA, and Online, on October 3, 2024

* Corresponding author E-mail: xunj@g.clemson.edu

Hybrid Parallelization for Accelerating Visibility-Graph Construction and

Community Detection on Temporal Data

Xun Jiaa, Minzhang Zhengb, Liwei Wanga, Shuangshuang Jina

aSchool of Computing, Clemson University, 1240 Supply St, North Charleston, 29406, USA

bDepartment of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, 38105, USA

ABSTRACT

In the present era, vast amounts of time series data, particularly in

biology, require efficient analysis due to high-dimensional datasets

from advanced technologies. Transforming time series into networks

and applying community detection methods can uncover dynamic

patterns as temporal network communities. However, the large size of

these datasets often extends analysis time. High Performance

Computing (HPC) addresses this by accelerating traditional

applications. This article presents an HPC-optimized version of the

visibility-graph-based temporal community detection method.

Enhancing the original algorithm with parallel processing, including

shared memory and message passing models, improves adaptability.

Experiments using an artificial sine series and two real-world

datasets—biological time series and power consumption patterns—on

Clemson's Palmetto Cluster demonstrate significant performance

improvements and scalability over the original approach.

Keywords: High Performance Computing, Temporal Series Analysis,

Visibility Graph, Community Detection

I. INTRODUCTION

Temporal data holds substantial value for advancing
knowledge across various scientific disciplines. In
environmental studies, the tracking of temporal changes in
environmental factors plays a pivotal role in climate research
and disaster prediction. Moreover, temporal data finds
indispensable applications in diverse domains such as
epidemiology, transportation planning, climate science, and
urban development, serving as the foundational framework for
modeling, prediction, and response to dynamic processes
(Langran, 1989). The introduction of the visibility graph (VG)
algorithm (Lacasa et al., 2008) has revolutionized the analysis
of temporal data by transforming time series into structured
graphs, thereby facilitating the application of graph algorithms
to temporal data. Community detection, a fundamental graph
analysis tool, emerges as a potent instrument for unveiling
evolving patterns, enhancing comprehension of dynamic
behaviors, and empowering data-driven decision-making in
domains characterized by temporal data evolution. However,
conventional methodologies, while effective in fulfilling their
intended purposes, were not originally conceived with runtime
performance optimization in mind. The relentless proliferation
of time series data, characterized by its burgeoning volume, has
led to prolonged processing times, impeding research
endeavors, particularly in temporal community detection.
Scientific computations traditionally hinge on single-core

performance, severely limiting their real-time capabilities.
Furthermore, community detection algorithms confront
significant challenges amidst the surge in large-scale, intricate
network data across scientific fields. Massive network data
forms a large-scale network, composed of billions of nodes and
edges, which generates models with large amount of super-
parameters and extensive training sets (Jin et al., 2021). The
TCCD model proposed in (Wang, Jin, Musial, & Dang, 2019)
and the stochastic model method proposed in (Jin, Wang, Dang,
He, & Zhang, 2016) train advanced models by applying
approximation and reduction on the sophisticated network
structure to keep the training efficiency, leading to the sacrifice
of modeling accuracy.

Fig. 1. The process of community detection on time series

High Performance Computing (HPC) accelerates scientific
computations by utilizing supercomputers and cloud
computing. Researchers across various fields use parallel
computing to develop high-performance applications,
maximizing run-time performance within available resources.
However, developing mature HPC-based applications is
complex, requiring deep understanding of parallel program
behaviors and significant programming expertise.

In this study, we introduce a parallelized VG-based
temporal community detection algorithm for time series
analysis. Parallel processing is incorporated into both the
conversion of time series to VGs and the community detection
process. Figure 1 provides an overview of the procedure. We
enhanced the original Python algorithm by optimizing data
structures and integrating multiprocessing, shared memory, and
message passing for parallel processing. Performance
comparisons between the HPC-optimized and serial versions
using synthetic and real data demonstrate significant speed
improvements.

The paper is organized as follows: Section Ⅱ reviews HPC
and temporal community detection. Section Ⅲ details the HPC-
optimized algorithm. Section Ⅳ describes the experimental
setup and presents comparative results. Section Ⅴ concludes
with future work.

2

II. BACKGROUND

A. High Performance Computing

HPC aggregates computing resources for high
computational capability, solving large problems in science and
engineering. Traditional applications, often designed serially,
face performance limitations due to single-CPU restrictions.
Modern multi-core CPUs and cloud HPC resources address
these limitations, advancing research in machine learning
(Ramirez-Gargallo, Garcia-Gasulla, & Mantovani, 2019),
physics (Jiang, Liu, & Cheng, 2022), power systems (Wang,
Jin, Huang, Huang, & Chen, 2022), and biology (Sanbonmatsu,
& Tung, 2007).

HPC uses two classical models: data-level parallelism and
task-level parallelism. Data-level parallelism, often
implemented with threads and shared memory (e.g., OpenMP
(Dagum, & Menon, 1998), pthreads (Nichols, Buttlar, & Farrell,
1996)), performs identical operations on separate data segments.
GPUs (Luebke, & Harris, 2004) exemplify this model. Task-
level parallelism distributes different tasks across nodes, used in
MPI (Gabriel et al., 2004), Hadoop MapReduce (Dean, &
Ghemawat, 2008) and Apache Spark (Apache sparkTM).
Innovative applications like PETSc (Abhyankar et al., 2018),
and tools like Python's NumPy (Harris et al., 2020) and Julia
(Bezanson, 2017) leverage low-level libraries (e.g., (BLAS),
(LAPACK)) for specialized needs.

B. Visibility Graph and Temporal Community Detection

VG transforms time series data into networks, preserving
essential properties (Lacasa et al, 2008). Nodes represent time
points, connected if they can be joined by an unobstructed line.
VGs facilitate diverse applications, such as analyzing human
behavior in biology (Masoudi-Sobhanzadeh, Gholaminejad,
Gheisari, & Roointan, 2022), (Kutluana, & Türker, 2024) and
planning collision-free paths in robotics (Bonin-Font, &
Burguera, 2020). Variants like weighted and dynamic VGs cater
to novel applications.

Community detection identifies clusters within data,
applicable in fields like biology (Rahnavard et al., 2021),
computer science (Gasparetti, Sansonetti, & Micarelli, 2021),
and social science (Guerrero-Solé, 2017). It enhances
understanding of social networks and improves
recommendation systems. Advanced methods, such as tensor-
based algorithms (Al-Sharoa, Al-Khassaweneh, & Aviyente,
2018), track brain network structures over time.

Despite many VG applications, parallel programming to
enhance runtime performance is not a primary focus. The
growing demand for processing intensive tasks calls for more
efficient programs. HPC empowers researchers and engineers to
efficiently handle complex scenarios and large datasets,
enabling real-time applications when necessary.

III. METHODOLOGY

In our study, we adapted the serial approach by (Zheng,
Domanskyi, Piermarocchi, & Mias, 2021) as the foundational
framework (Zheng, Domanskyi, Piermarocchi, & Mias, 2021)
which effectively identifies communities within temporal data.
This method transforms time series data into a VG, then detects
temporal communities within these graphs. In biology, these

communities represent groups of time points within a signal that
likely indicate the same biological state.

To enhance performance, we integrated shared-memory and
message-passing models into the algorithm, introducing two-
tiered task-level parallelism for concurrent processing of
multiple time series. We utilized (Harris et al., 2020) to handle
dense-matrix-based large data structures, boosting the
computational efficiency.

A. The serial method

The serial method deals with time series data first. It maps
time series to a “Weighted Dual-Perspective Visibility Graph
(WDPVG)”. Algorithm 1 describes the process of VG
construction. The VG is constructed by first representing the
time series points as N nodes in a network, where nodes i and j

represent time 𝑡𝑖 and 𝑡𝑗, with intensities 𝑠(𝑡𝑖) and 𝑠(𝑡𝑗). Edges

are added between node i and j if an intermediate time point k
has an intensity 𝑠(𝑡𝑘) that satisfies the following conditions for
natural VG (NVG) and Horizontal VG (HVG) respectively.

When applying weight to the added edge, various choices
are to be offered including no weight, Euclidean distance, the
tangent of the view angle, or the time difference, as described
respectively by (1)-(3) and thus the adjacency matrix is obtained.

Then, the reflected perspective NVG/HVG is constructed by
reflecting the intensities 𝑆𝑡 across the time axis 𝑆𝑡

′ = −𝑆𝑡 and
then repeat the steps mentioned above. To finally get the
WDPVG, the normal perspective NVG/HVG and reflected
perspective NVG/HVG is combined by the following criteria:

where 𝐴𝑖𝑗 and 𝐴𝑖𝑗
′ represent the adjacency matrix of the normal

perspective NVG/HVG and the reflected perspective
NVG/HVG respectively.

Algorithm 1 Serial Visibility Graph Creation

Input: tp: time stamps, data: time series data

Output: G: the adjacency matrix of VG

Initialization: G = empty matrix, dim = number of time

stamps
 1: for i = 0 to dim do

2: if i < dim - 1 then

3: G[i, i + 1] = G [i + 1, i]  designated

value

4: for j = i + 2 to dim do

5: if max(data[i +1 : j])<min(data[i], data[j])

then

3

6: G [i , j] = G [j , i]  des ignated va lue

7: e n d i f

8: end for

9: end if

10: end for

After constructing the VG, the next steps involve community
identification and optional merging. The shortest path between
the VG's initial and final nodes is computed to form the
community stems, with each node on this path considered a
community core. Nodes outside this path are assigned to
communities based on proximity to the stem nodes, using the
shortest path length. If multiple nodes have identical path
lengths, they are assigned to the community of the first node in
the predefined direction. The shortest path lengths for all node
pairs in the VG are calculated. After community construction,
an optional merging process may be applied: communities with
shortest path lengths below a cutoff value are merged, based on
evaluating path lengths between pairs and selecting the smallest.
Algorithm 2 provides a brief explanation of the process.

Algorithm 2 Serial Temporal Community Detection

Input: G: the adjacency matrix of VG

Output: Communities: the detected communities from the

graph

Initialization: dist = empty_matrix, dim = the dimension

of the matrix, Communities = empty_set

1: for i = 0 to dim do

2: for j = 0 to dim do

3: d i s t [i , j] = d i s t [j , i]

 D i j k s t r a (i , j)
4: e n d f o r

5: end for

6: shortest_path = DijkstraPath(start_node, end_node)

7: for i = 0 to length_of(shortest_path) do

8: Communities.append(i:[shortest_path[i]])

9: end for

10: for i = 0 to dim do

 if i not in shortest_path then

12: c_id = min(all pair of Dijkstra(i,v) for v in

shortest_path)

13: Communit ie s [c_ id] .app end(i)

14: e n d i f

15: end for

Suppose that V represents the number of the nodes in the
graph, and E represents the number of the edges, the process of
building VGs has a time complexity of 𝑂(𝑁3) and a space
complexity of 𝑂(𝑁2). In the community detection algorithm,
finding the shortest path using Dijkstra’s algorithm is an
𝑂(𝑁𝑙𝑜𝑔𝑁) process, calculating all pairs of Dijkstra's path
length cost 𝑁 ∗ 𝑂(𝑁𝑙𝑜𝑔𝑁) time, assigning the nodes into their
communities costs 𝑂(𝑁2) time, and the optional merging
process has a run-time of 𝑂(𝑁2), hence, all the sub processes

adds up to an 𝑂(𝑁𝑙𝑜𝑔𝑁 + 𝑁2𝑙𝑜𝑔𝑁 + 𝑁2)=𝑂(𝑁2𝑙𝑜𝑔𝑁) overall
time complexity. The space complexity is 𝑂(𝑁2) as only the
adjacency matrix is needed through the whole process.

It is worth noting that while the accuracy and performance
of temporal community detection show promise, as
demonstrated by the author, it is hindered by extended execution
times. With the ever-increasing volume of accessible data,
inefficient algorithms can impede progress in research and
engineering endeavors. To address this challenge, we have
incorporated HPC techniques into our approach for a faster and
more efficient data processing.

B. Parallelization and Implementation for the Serial Version

Since Python is widely used in scientific research and the
original algorithm was implemented in Python, we continued
using Python for our parallel design. Due to Python's Global
Interpreter Lock (GIL) restricting multithreading, we employed
multiprocessing as an alternative. The VG computation and
node allocation involve numerous identical, independently
executable operations, making the shared-memory model
suitable. To mitigate slowdowns from atomic operations in
accessing critical data fields, we also incorporated a message-
passing model. Algorithm 3 includes a load balancer to address
performance issues from line 5 of Algorithm 1, where the
workload decreases as the value of i increases, potentially
causing uneven task distribution.

Algorithm 3 Parallelized Visibility Graph Creation

Input: LoadBalancer():function that distribute work,

worker(chunk):worker function that calculates the as-

signed chunk of the adjacency matrix, tp: time stamps,

data: time series data

 num_proc: number of worker processes

Output: G: the adjacency matrix of VG

Initialization: G = shared memory block, dim = number

of time stamps
1: chunks = LoadBalancer()
2: for i in () to num_proc do

3: p = new_process(worker, args=(chunks[i], G))

4: p . s t a r t ()

5: p . j o i n ()
6: end for

In Algorithm 3, the outer loop in line 1 from Algorithm 1 is
evenly divided among all worker processes to ensure equitable
task distribution. To further counteract workload imbalances,
suppose we have a total of n processes with indices ranging

from 1 to n. Each process is allocated an equal share of
𝑑𝑖𝑚

𝑛

numbers, and each i is assigned to process 𝑝𝑖𝑛𝑑𝑒𝑥 using the
following equation:

𝐴The adjacency matrix is defined as a NumPy matrix and
resides within a Python shared memory block. Individual
processes are initiated as distinct Python interpreter processes,
each equipped with its own dedicated work list. These
processes operate concurrently to compute the adjacency
matrix. For an in-depth understanding of the parallelized
algorithm, including the load-balancing mechanism, please
refer to Algorithm 3.

4

In Algorithm 4, we also define the distance matrix as a
shared NumPy matrix, and the while loop in line 1 of Algorithm
2 is evenly distributed among the processes. Lines 11 to 15
introduce a redesigned assignment procedure encapsulated
within a function. Each process is responsible for handling its
own chunk of nodes and stores the results in its local memory
to prevent potential data race issues arising from simultaneous
writes. Every process is assigned a specific set of nodes and
concurrently executes the function to allocate nodes to their
respective communities. Upon completing the computation, the
results are transmitted to the main process, which consolidates
them to obtain the outcome. Once all sub-results are received,
the main process returns.

Algorithm 4 Parallelized Community Detection

Input: C: the adjacency matrix of the VG,

worker_Com(chunk, local):worker function that assign

nodes to their community,

num_proc: number of worker processes,

worker_Dijkstra(chunk, mat): worker function that cal-

culates the Dijkstra's path lengths

Output: communities: the detected communities from the graph

Initialization: dist = empty matrix, dim = the dimension

of the matrix,

1: chunk =
𝑑𝑖𝑚

𝑛𝑢𝑚_𝑝𝑟𝑜𝑐

2: for i = 0 to num_proc do

3: p = new_process(worker_Dijk(i*chunk, (i+1)*chunk),

dist)

4: p.start()

5: p.join()

6: end for

7: shortest_path = DijkstraPath(start node, end node)

8: for i = 0 to length_of(shortest_path) do

9: Communities.append(i:[shortest_path[i]])

10: end fo r

11: for i = () to num_proc do

12: i f process == 'main ' then

13: p = new_process(worker Com(i*chunk,(i+1)*chunk),

local)

14: p . s t a r t ()

15: p.send_to_main(local)

16: p . j o i n ()

17: e n d i f

18: end for

19: if process == 'main' then

20: i = 0

21: while i<num_proc do

22: local = process.receive()

23: Communities.merge(local)

24: i + = 1

25: end while

26: end if

Our approach introduces more efficient parallel procedures
and leverages NumPy matrices to streamline the code and

enhance performance compared to the original implementation.
Assuming a time series length of N and the utilization of
num_proc processes, Amdahl's law (Amdahl, 1967) indicates
that the theoretical maximum speedup is:

C. Two-Tiered Parallelism

While the parallelized algorithm is primarily designed for
single long time series, scenarios arise where researchers need
to work with datasets comprising thousands of short time series.
Algorithms 3 and 4, while capable of significantly accelerating
the processing of long time series, may incur substantial
overhead due to process scheduling when applied to numerous
short time series. If the higher-level task (e.g., executing one VG
construction and community detection on individual time series)
remains serial, a challenge persists: resources are not fully
utilized, and runtime performance remains suboptimal.

To tackle this issue, we have implemented a two-tiered

parallelism approach. While the lower-level parallelism

utilizes Algorithm 3 and Algorithm 4 to accelerate the

processing of one task, the higher-level parallelism utilized

message passing model and enables users to concurrently

process multiple tasks. A master process initiates multiple

sub-processes to execute higher-level tasks concurrently. Once

a sub-process completes its task, it sends the partial result

back to the master program, which aggregates all the partial

results to derive the comprehensive result. Users can

determine the number of processes to employ for higher-level

tasks based on an analysis of which number of processes

yields the best speedup at the inner level and the available

core count. For instance, if there are 40 available cores and it's

determined that using 8 processes provides the optimal

speedup for a single time series processing task (lower-level

parallelism), users can opt to employ 5 processes to

concurrently process 5 tasks (higher-level parallelism). This

approach further enhances and rationalizes resource utilization

while enhancing performance gains. Supplementary

information can be found in Algorithm 5.

Algorithm 5 Parallelized Task Processing

Input: data: the set of time series. NUM_PROC: number of

processes, worker(data): the two functions above,

Output: result: the results

Initialization: result = empty set, chunks = data divided

evenly to num.proc chunks.
 1: if process == main then

2: for i = 0 to NUM_PROC do

3: p = Process(worker(chunks[i]))

4: p . send_to_main()

5: p.start()

6: end for

7: end if

8: if process == 'main' then

9: i = 0

5

10: while i < num_proc do
11: local=process.receive()

12: resu l t .merge(loca l)

13: i + = 1

14: e n d w h i l e

15: end if

IV. EXPERIMENT AND ANALYSIS

In this section, we present the implementation and
evaluation of our proposed approaches. The implementation was
conducted on the Palmetto cluster at Clemson University,
featuring 34,916 CPU cores, high speed interconnection, and
large RAM, with over 850 nodes are equipped with NVIDIA
Tesla GPUs. One of the nodes we used for testing consists of 40
Intel Xeon Gold 6258R CPUs, each operating at 2.70 GHz, and
equipped with 128 GB of global shared memory to test single
long time series. The other node, to support testing multiple time
series, features 80 Intel Xeon Gold 6138 CPUs running at 2.00
Ghz with 750 GB of global shared memory.

We conducted comprehensive tests by comparing the
performance of the parallelized versions against the original
serial version. To assess the performance gains effectively, we
performed tests on both artificial sine data and real-world
datasets. The sine data comprised 10,000 data points generated
using Eq.7 and Eq.8, where the “timestamp” ranged from 0 to
1114π with an increment of 0.35. The first real-world dataset
was obtained from (Zhou et al., 2019) and contains 10,346 time
series that containing 152 data points. The second real-world
dataset was sourced from (Hebrail, & Berard, 2012), where we
truncate the first 10000 points for efficiently fulfilling the testing
purpose.

A. Single Long Time Series

We assessed the speedup achieved by the parallelized VG
construction process using the sine data and the power data,
encompassing all four types of graphs. Figure 2 and 3 illustrates
the runtime, while Table 1 and 2 present speedup metrics for VG
construction using the same datasets. Notably, our observations
indicate that more complex graphs benefit to a greater extent
from parallelization. Moreover, as the dataset size increases, the
speedup tends to approach linearity.

Fig. 2. Runtime of VG construction on Sine data

Fig. 3. Runtime of VG construction on Power data

TABLE I. SPEEDUP OF VG CONSTRUCTION ON SINE DATA

of Processes 1 2 4 8 12 16 32

NVG 1.00 1.97 3.49 5.71 6.87 7.13 6.05

Dual NVG 1.00 1.98 3.61 6.26 8.03 9.07 6.75

HVG 1.00 1.96 3.72 6.63 8.53 9.82 16.07

Dual HVG 1.00 1.98 3.75 6.96 8.89 11.22 17.69

TABLE II. SPEEDUP OF VG CONSTRUCTION ON POWER DATA

of Processes 1 2 4 8 12 16 32

NVG 1.00 1.90 3.44 5.61 6.54 6.75 5.48

Dual NVG 1.00 1.90 3.63 6.18 7.79 8.74 6.07

HVG 1.00 1.94 3.75 6.92 9.54 11.30 16.57

Dual HVG 1.00 1.91 3.77 6.81 9.81 11.92 18.16

Table 3 provides insights into the size of dual-perspective
HVG with distance-based weight, constructed using Algorithm
\ref{parallel-VG}. The graph from Sine data contains 10000
nodes and 29961 edges, the graph from (Hebrail, & Berard, 2012)
contains 10000 nodes and 18841 edges. The 10346 graphs
generated from (Zhou et al., 2019) consist of 152 vertices with
edge counts ranging between 82 and 236. We subsequently
executed Algorithm 4 on the dual-perspective HVG with weight
attributed as “distance” from both the sine series and the power
consumption series (Hebrail, & Berard, 2012). The
corresponding runtime and speedup data are presented in Table
4, wherein the upper section displays the outcomes pertaining to
the sine data, while the lower section exhibits the results
associated with the power consumption data. The results
indicate that this algorithm demonstrates performance and
characteristics similar to that of Algorithm 3.

TABLE III. SUMMARY OF VGS

Name # of Vertices # of Edges # of TSs

Sine Data 10,000 29,961 1

6

Biological 152 82,236 10,346

Power Consumption 10,000 18,441 1

B. Two-Tiered Parallelism for Multiple Time Series

To evaluate the performance of our two-tiered parallelism
approach, we conducted tests using time series data from (Zhou
et al., 2019). Since a single time series is relatively short, we
chose to use only 1 process to avoid the overhead from process
scheduling. Specifically, we ran the VG construction and
community detection processes with 1 processes executing a
single task, and 1, 2, 4, 8, 16, 32 processes on the higher-level
and observed efficient results. Although the overhead hurts the
performance, a noteworthy speedup is still seen. We also
examined a dataset comprising 4 time series extracted from the
head of (Hebrail, & Berard, 2012), with each chunk containing
10080 data points (as the data is recorded every minute, 10080
records contains data from a week). Upon testing, we utilized 16
processes in the lower-level parallelism for a single task to
achieve a maximum performance, and varied the number of
processes from 1 to 4 for the higher-level processing and
achieved promising results (Table 5). These outcomes affirm the
efficiency of the second-level parallelism: For the data from
from (Zhou et al., 2019), though the scheduling overhead from
32 processes reduced the speedup, we still achieve 10.76x
speedup against the serial version. For the data from (Hebrail, &
Berard, 2012), While the higher-level parallelism utilizes 3
processes, the result shows a 3.2x speedup comparing to using
only 1 processes, and a 34.5x speedup comparing to the serial
execution (2431.5s upon testing). However, when using 4
processes, the speedup drops due to the overhead of massive
process scheduling.

TABLE IV. PERFORMANCE SUMMARY OF ALGORITHM 4 ON SINGLE

LONG TIME SERIES

of Processes 1 2 4 8 16 32

Runtime(s) 315.9 163.6 84.1 44.0 26.1 16.5

Speedup 1.00x 1.93x 3.76x 7.18x 12.10x 19.15x

of Processes 1 2 4 8 16 32

Runtime(s) 234.9 123.4 64.2 35.8 21.2 14.7

Speedup 1.00x 1.90x 3.65x 6.56x 11.08x 15.98x

TABLE V. PERFORMANCE SUMMARY OF THE TWO-TIERED

PARALLELISM

of Processes 1 2 4 8 16 32

Runtime(s) 795.6 693.1 411.8 254.2 133.1 73.9

Speedup 1.00x 1.14x 1.93x 3.24x 5.97x 10.76x

of Processes 1 2 3 4

Runtime(s) 225.8 125.0 70.5 80.9

Speedup 1.00x 1.81x 3.20x 2.79x

Our validation process included comparisons between the
results obtained from the proposed parallelized methods and
those from the original version. Remarkably, the results were

found to be consistent. For single-long time series, we achieved
a nearly 7x speedup with 8 processes, with greater
computational complexity yielding more substantial benefits
from parallelization. In cases involving datasets containing
numerous short time series, the two-tiered parallelism exhibited
remarkable performance improvements. Moreover, for datasets
featuring a substantial number of mid-sized to huge time series,
the two-tiered parallelism approach yielded optimal
performance enhancements. Users can flexibly determine the
number of processes based on their specific requirements and
problem domains.

V. CONCLUSION

This paper introduces a parallelized approach for VG-based
community detection applied to time series data. We have
innovatively incorporated two-tiered parallelism to address a
broader spectrum of real-world scenarios. Our implementation
demonstrates commendable performance in terms of execution
time, without incurring additional memory overhead.
Furthermore, it exhibits robust scalability as problem sizes
increase. This work underscores the adaptability of parallel
programming in computationally intensive applications.

While parallel applications have brought significant
advantages in both academic and industrial domains, it is worth
noting that their successful implementation often demands
substantial expertise. The intricacies of parallel programming
can introduce challenges related to debugging and verification.
Additionally, the task of implementing and comparing the
performance of diverse parallel APIs to select the most suitable
one can be labor-intensive. To tackle this problem, our future
tasks will focus on program verification and automated
parallelization, with the aim of streamlining the development
cycle for parallel applications. This will enable a broader
audience to harness the benefits of parallelization in their
respective domains.

REFERENCES

Langran, G. (1989). A review of temporal database research and its use in GIS

applications. International journal of geographical information

system, 3(3), 215-232.
Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuno, J. C. (2008). From

time series to complex networks: The visibility graph. Proceedings of the

National Academy of Sciences, 105(13), 4972-4975.
Jin, D., Yu, Z., Jiao, P., Pan, S., He, D., Wu, J., ... & Zhang, W. (2021). A survey

of community detection approaches: From statistical modeling to deep

learning. IEEE Transactions on Knowledge and Data Engineering, 35(2),
1149-1170.

Wang, Y., Jin, D., Musial, K., & Dang, J. (2019, July). Community detection in

social networks considering topic correlations. In Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 321-328).

Jin, D., Wang, H., Dang, J., He, D., & Zhang, W. (2016, February). Detect

overlapping communities via ranking node popularities. In Proceedings
of the AAAI Conference on Artificial Intelligence (Vol. 30, No. 1).

Ramirez-Gargallo, G., Garcia-Gasulla, M., & Mantovani, F. (2019, May).

TensorFlow on state-of-the-art HPC clusters: a machine learning use case.
In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID) (pp. 526-533). IEEE.

Jiang, L., Liu, Y., & Cheng, M. C. (2022). Fast-Accurate Full-Chip Dynamic
Thermal Simulation With Fine Resolution Enabled by a Learning

Method. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 42(8), 2675-2688.
Wang, C., Jin, S., Huang, R., Huang, Q., & Chen, Y. (2022). A configurable

hierarchical architecture for parallel dynamic contingency analysis on

gpus. IEEE Open Access Journal of Power and Energy, 10, 187-194.

7

Sanbonmatsu, K. Y., & Tung, C. S. (2007). High performance computing in
biology: multimillion atom simulations of nanoscale systems. Journal of

structural biology, 157(3), 470-480.

Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-
memory programming. IEEE computational science and

engineering, 5(1), 46-55.

Nichols, B., Buttlar, D., & Farrell, J. (1996). Pthreads programming: A POSIX
standard for better multiprocessing. " O'Reilly Media, Inc.".

Luebke, D., & Harris, M. (2004, June). General-purpose computation on

graphics hardware. In Workshop, SIGGRAPH (Vol. 33, p. 6).
Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J.

M., ... & Woodall, T. S. (2004). Open MPI: Goals, concept, and design of

a next generation MPI implementation. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface: 11th European

PVM/MPI Users’ Group Meeting Budapest, Hungary, September 19-22,

2004. Proceedings 11 (pp. 97-104). Springer Berlin Heidelberg.
Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on

large clusters. Communications of the ACM, 51(1), 107-113.

Apache sparkTM - unified engine for large-scale data analytics. Apache
SparkTM - Unified Engine for large-scale data analytics. (n.d.).

https://spark.apache.org/

Abhyankar, S., Brown, J., Constantinescu, E. M., Ghosh, D., Smith, B. F., &
Zhang, H. (2018). PETSc/TS: A modern scalable ODE/DAE solver

library. arXiv preprint arXiv:1806.01437.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with

NumPy. Nature, 585(7825), 357-362.
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh

approach to numerical computing. SIAM review, 59(1), 65-98.

Blas (Basic Linear Algebra Subprograms). (n.d.). https://www.netlib.org/blas/
LAPACK - linear algebra package. (n.d.). https://www.netlib.org/lapack/

Masoudi-Sobhanzadeh, Y., Gholaminejad, A., Gheisari, Y., & Roointan, A.

(2022). Discovering driver nodes in chronic kidney disease-related
networks using Trader as a newly developed algorithm. Computers in

Biology and Medicine, 148, 105892.

Kutluana, G., & Türker, İ. (2024). Classification of cardiac disorders using
weighted visibility graph features from ECG signals. Biomedical Signal

Processing and Control, 87, 105420.

Bonin-Font, F., & Burguera, A. (2020). Towards multi-robot visual graph-
SLAM for autonomous marine vehicles. Journal of Marine Science and

Engineering, 8(6), 437.

Rahnavard, A., Chatterjee, S., Sayoldin, B., Crandall, K. A., Tekola-Ayele, F.,
& Mallick, H. (2021). Omics community detection using multi-resolution

clustering. Bioinformatics, 37(20), 3588-3594.

Gasparetti, F., Sansonetti, G., & Micarelli, A. (2021). Community detection in
social recommender systems: a survey. Applied Intelligence, 51(6), 3975-

3995.

Guerrero-Solé, F. (2017). Community detection in political discussions on
Twitter: An application of the retweet overlap network method to the

Catalan process toward independence. Social science computer

review, 35(2), 244-261.
Al-Sharoa, E., Al-Khassaweneh, M., & Aviyente, S. (2018). Tensor based

temporal and multilayer community detection for studying brain

dynamics during resting state fMRI. IEEE Transactions on Biomedical
Engineering, 66(3), 695-709.

Zheng, M., Domanskyi, S., Piermarocchi, C., & Mias, G. I. (2021). Visibility

graph based temporal community detection with applications in
biological time series. Scientific reports, 11(1), 5623.

Amdahl, G. M. (1967, April). Validity of the single processor approach to

achieving large scale computing capabilities. In Proceedings of the April
18-20, 1967, spring joint computer conference (pp. 483-485).

 Zhou, W., Sailani, M. R., Contrepois, K., Zhou, Y., Ahadi, S., Leopold, S. R., ...
& Snyder, M. (2019). Longitudinal multi-omics of host–microbe

dynamics in prediabetes. Nature, 569(7758), 663-671.

Hebrail, G., & Berard, A. (2012). Individual household electric power
consumption data set. UCI Machine Learning Repository.

https://www.netlib.org/blas/

