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ABSTRACT 

Shape Expression (ShEx) is a novel schema language proposed for 

RDF/graph data. For a ShEx schema S and a query q, q is said to be 

unsatisfiable if for any valid data D under S q reports an empty answer 

over D. In general, the size of RDF/graph data is very large, and thus 

it is inefficient to perform unsatisfiable queries on such data. 

Therefore, it is desirable that we can detect unsatisfiable queries 

efficiently before executing them. In this paper, we consider 

Conjunctive Property Path, a generalization of Property Path defined 

in SPARQL 1.1, as the query language. First, we propose an algorithm 

for determining satisfiability of Conjunctive Property Path queries 

under ShEx schema. Then we conducted a preliminary experiment, 

which results suggest that the proposed algorithm determines if a 

given Conjunctive Property Path query is satisfiable efficiently.  
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I. INTRODUCTION 

For over years, RDF/graph is a popular data format widely 
used for variety of areas, Linked Open Data, social graph, 
biological network, and so on. In general, the sizes of such data 
tend to be very large, and thus it is useless and time-consuming 
to perform unsatisfiable queries over the data. Here, for a query 
q and a schema S, q is unsatisfiable under S if for any valid data 
D under S q reports an empty answer over D. Clearly, it is 
desirable that we can detect unsatisfiable queries efficiently 
before executing them. 

In this paper, we consider a query satisfiability problem 
under Shape Expression (ShEx). Here, ShEx is a novel schema 
language for RDF data proposed by W3C Draft Community 
Group (Baker, T. and Prud’hommeaux, 2019), and it is already 
used in various areas (Thornton et al, 2019). ShEx shares a 
number of core features with another novel schema language 
Shapes Constraint Language (SHACL), therefore the result in 
this paper can be applied to SHACL as well. As for query 
language, we use Conjunctive Property Path (CPP). Here, 
Property Path is a well-known path query language whose 
specification is given in SPARQL 1.1, and a CPP query consists 
of Property Path queries connected by conjunctive operators. 

In this paper, we fist show that determining whether a CPP 
query is satisfiable under a given ShEx schema is NP-hard. Then 
we consider a slight restriction of CPP, acyclic CPP, and 
propose a polynomial-time algorithm for determining whether a 
given acyclic CPP query is satisfiable under a given ShEx 
schema. In short, the algorithm decomposes a given CPP query 
q into Property Path queries q1, q2, … , qn, and then checks 

satisfiability of whole expression q by iteratively refineing the 
types of S for which qi is satisfiable. We conducted a preliminary 
experiment, which results suggest that the proposed algorithm 
can determine whether a given CPP query is satisfiable 
efficiently. 

RELATED WORK 

Query satisfiability has been a popular problem in database 
management field. For example, a number of studies on XPath 
satisfiability under DTD or XML Schema have been made, e.g., 
(Benedikt & Fan & Geerts, 2008; Figueira, 2018).  However, 
XML is modeled as ordered tree while RDF data is modeled as 
unordered graph, and thus the studies cannot apply to 
RDF/graph data. Zhang et al. consider satisfiability of SPARQL 
pattern query without schema (Zhang et al., 2016). Matsuoka et 
al. propose an algorithm for checking satisfiability of pattern 
queries under ShEx schema (Matsuoka & Suzuki, 2020), where 
the pattern query is a small fragment of our CPP query. To the 
best of the authors’ knowledge, no studies on satisfiability of 
CPP queries under ShEx schemas have been made so far. 

II. PRELIMINARIES 

Let Σ be a set of labels. A graph 𝐺 over Σ is denoted 𝐺 = (𝑉, 
𝐸), where 𝑉 is a set of nodes and 𝐸 ⊆ 𝑉 × Σ × 𝑉 is a set of labeled 
directed edges. 

Unlike XML data model, in RDF/graph data model the order 
among sibling nodes is less significant. Thus ShEx uses regular 
bag expression (RBE) to represent node type (Staworko et al., 
2015) instead of regular expression. RBE is defined similar to 
regular expressions except that RBE uses unordered 
concatenation instead of ordered one. Let Γ be a set of types. 
Then RBE over Σ × Γ is recursively defined as follows: 

・𝜀 and a :: t ∈ Σ×Γ are RBEs. 

・If r1, r2, …, rk are RBEs, then r1||r2||…||rk is an RBE, where 

denotes unordered concatenation. 

・If r1, r2, …, rk are RBEs, then r1|r2|…|rk is an RBE, where 

denotes disjunction. 

・If r is an RBE, then r?, r*, r+ are RBEs. 

RBE r is disjunction-capsuled if every disjunctive expression 

r1|r2|…|rk in r is enclosed by + or *. A ShEx schema is denoted 

S = (Σ, Γ, 𝛿), where Γ is a set of types and 𝛿 is a function from Γ 
to the set of RBEs over Σ × Γ. S is disjunction-capsuled if 𝛿(t) 
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is disjunction-capsuled for every t ∈ Γ. For example, let S = 
(Σ, Γ, 𝛿) be a ShEx schema, where Σ= {takes, supervisor, 
teaches}, Γ = {t1, t2, t3}, 𝛿(t1)=(takes::t2)*||(supervisor::t3)?, 
𝛿(t2)= 𝜀, 𝛿(t3)=(teaches::t2)*. Then it is easy to verify that 
the graph in Figure 1 is valid for S  since each node conforms 
to the type in color red.  

 

Figure 1: example of valid graph 

A Property Path over Σ is recursively defined as follows: 

・𝜀, a ∈ Σ, and * are Property Paths. 

・For a set {a1, a2, …, ak} of labels, !{a1, a2, …, ak} is a Property 

Path that matches any label except a1, a2, …, ak. 

・For any a ∈ Σ, a-1 is a Property Path, where -1 denotes inverse. 

・If r1, r2, …, rk are Property Paths, then r1.r2.….rk and r1|r2|…
|rk are Property Paths. 

・If r is a Property Path, then r?, r*, r+ are Property Paths. 

A Conjunctive Property Path query (CPP query, for short) 
is constructed by Property Paths with head and tail variables 
connected by conjunctive operators. Formally, CPP query Q is 
defined as follows: 

Q = ∧i (xi, pi, yi), 

where xi, yi are variables and pi is a Property Path. (xi, pi, yi) is 
evaluated true over graph G if for some assignment xi ← v and 
yi ← v’, G contains a path from v to v’ such that pi matches the 
sequence of labels on the path. By Var(Q) we mean the set of 
variables occurring in Q. Let G(Q) be the graph obtained by 
regarding each variable and each CPP query (xi, pi, yi) as a node 
and an edge from xi to yi labeled by “pi”, respectively. For query 
(edge) (xi, pi, yi), xi is called head and yi is called tail. We say that 
a CPP query Q is acyclic if G(Q) is acyclic.  

 For a ShEx schema S and a CPP query Q, Q is satisfiable 
under S if for some valid graph G of S, there is an assignment of 
Var(Q) under which Q is evaluated true over G.   

III. ALGORITHM 

In this section, we first show the complexity of the 
satisfiability problem briefly, then give an algorithm for solving 
the problem. We have the following theorem. 

Theorem 1:  For a ShEx schems S and a CPP query Q, 
determining whether Q is satisfiable under S is NP-hard. 

Thus, in the following we impose some restrictions on S and Q; 
we assume that S is disjunction-capsuled and that Q is acyclic. 
Under the restrictions, we present a polynomial-time algorithm 
for determining whether Q is satisfiable under S.  

 In the algorithm, ShEx schema S = (Σ, Γ, 𝛿) is treated as an 

NFA. Formally, the NFA of S is denoted MS = (Γ, Σ, Δ, nil, Γ), 

where Γ is a set of states (types), Δ is a transition function such 

that Δ(t,a) = {t’ | a::t’ appears in 𝛿(t)} for any t  ∈ Γ and any a  

∈ Σ, the start state is nil (the start state is specified during 
execution of the algorithm), and the set of final states is Γ. 

Let Q(x) be the set of Property Path queries in Q whose head 
is x, that is,  

Q(x) = {(xi, pi, yi) | xi = x and (xi, pi, yi) appears in Q}. 

Let T:Var(Q) → 2Γ be an assignment to the variables in Q. 
During execution of the algorithm, T(x) holds “valid” types for 
x at each iteration; T(x) initially holds all the types of ShEx 
schema S, and is gradually reduced until T(x) converges. The 
one-step refinement of Q(x) under T over MS is a tuple (X, Y1, …, 
Yn) of sets of types satisfying the following conditions: 

1. X ⊆T(x) and Yi ⊆T(yi) for every 1 ≤ i ≤ n. 

2. For every t ∈ X, for every 1 ≤ i ≤ n, and for every t’ ∈ 
Yi, t’  is reachable from t  via pi over MS. 

We now show the algorithm. We assume that there is a partial 
order on Var(Q); x ≻ y if (x, p, y) ∈ Q.  

 

Input: ShEx schema S = (Σ, Γ, 𝛿), CPP query Q 
Output: satisfiable or unsatisfiable 
1. Let MS be the NFA of S 

2. T(x) ← Γ for every x ∈ Γ 

3. Let G(Q) be the graph obtained from Q 
4. Let x1,…,xn be the nodes (variables) in G(Q) having no 

incoming edges 
5. Let PQ be a priority que over Var(Q) 
6. Add  x1,…,xn to PQ 
7. while PQ is nonempty do 
8.     x ← dequeue(PQ) 
9.     Let (x, p1, y1), …, (x, pn, yn) the Property Path queries in 

Q(x). Compute the one-step refinement of Q(x) under T 
over MS. Let (X, Y1, …, Yn) be the result. 

10.     if one of X, Y1, …, Yn is empty then 
11.          return unsatisfiable 
12.     T(x) ← X, T(y1) ← Y1, …, T(yn) ← Yn 
13.     for each z ∈ {x, y1, …, yn} do 
14.         if (z = x  and X ⊊T(x)) or (z = yi  and Yi ⊊T(yi)) then 
15.             if z != x  then 
16.                 Add z  to PQ 
17.            Let (w1, p1, z), … , (wk, pk, z) be the incoming edges 
                   of z  in G(Q) s.t. wi  != x 
18.       Add w1, …, wk  to PQ 
19. return satisfiable 

 

We use priority queue PQ over Var(Q), where the priority is 
determined by the partial order ≻ over Var(Q) (ties are broken 
arbitrarily). PQ holds variables that should be evaluated. Initially, 
PQ holds x1,…,xn in G(Q) having no incoming edges (lines 4 to 
6). Then we enter the while loop to evaluate each variable (lines 
7 to 18). A variable x is picked up from PQ and then edges whose 
head is x are evaluated (line 9). The one-step refinement is done 
by traversing states of MS (details are omitted due to space 
limitation). If some variable becomes empty, then Q is 
unsatisfiable and the result is reported (lines 10 and 11). 
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Otherwise, the results of the one-step refinement are assigned to 
T (line 12). If there is a variable z whose types are reduced, i.e., 
X ⊊T(x) or Yi ⊊T(yi), then we have to re-evaluate z and the 
variables incident to z. Thus, z  and head wi  of edges having 
z  as the tail are added to PQ (lines 17 and 18). Finally, if the 
evaluation converges without any variables being empty, then it 
is reported that Q is satisfiable (line 19). 

 The algorithm runs in polynomial time since (1) the one-step 
evaluation can be done in polynomial time by traversing MS and 
(2) each T(x) has at most |Γ| types and for each iteration of the 
while loop at least one type is deleted from some T(x). 

IV. EXPERIMENTAL RESULTS 

We conducted a preliminary experiment on the algorithm. 
All experiments were executed on a machine with Intel Core i5 
CPU 2.3 GHz dual-core, 8.00GB RAM, MacOS Big Sur 11.4. 

In the experiment, we need unsatisfiable CPP queries. Thus, 
we made a Ruby program that automatically generates CPP 
queries by randomly combining multiple labels and then 
randomly concatenates them. Length (i.e., the number of 
Property Paths) of CPP query, length of Property Paths, shape 
of CPP query (straight or DAG), and probability of assigning 
operator (?, *, +) to label can be specified.  

We implemented the algorithm using Ruby, and generated 
N3 data by SP2Bench (Schmidt et al., 2008) consisting of 10000 
triples (1.64MB).  We also created a ShEx schema for 
SP2Bench. Using the ShEx schema, the CPP queries, and the 
data, we first executed the proposed algorithm to check 
satisfiability of the CPP queries under the ShEx schema. We also 
executed the CPP queries over the data. Each CPP query was 
processed by Ruby SPARQL library. 

 

Figure 2: experimental result of simpler case 

Figures 2 and 3 show the results. Figure 2 shows a simpler 
case, where each CPP query has no operator, each CPP query is 
of length 3 to 7, the shape of each CPP query is straight, and the 
length of each Property Path is 10 (i.e., each CPP query is of 
length 30 to 70). Here, for a CPP query Q = ∧i (xi, pi, yi), we say 
that Q is straight if yi = xi+1 for every i. Figure 3 shows a more 
general case, where an operator is assigned to a label with 
probability 5%, each CPP query consists of 3 to 7 Property Paths, 
the shape of each CPP query is DAG, and the length of each 
Property Path is 5. In both cases, for each length of CPP query, 
we generated 10 different CPP queries and measured the average 
execution time of them. 

 

Figure 3: experimental result of more general case 

From these results, we can see that the proposed algorithm 
can detect unsatisfiable queries more efficiently, compared to 
performing CPP queries over the RDF data. This means that by 
detecting unsatisfiable CPP queries before execution, we can 
safely save time for executing CPP queries, and even if  executed 
query is satisfiable, the time loss for running the algorithm is 
very limited. In addition, in the latter case, the execution time to 
perform CPP queries increases significantly, while the increase 
in execution time of the proposed algorithm is negligible. 

V. CONCLUSION 

In this paper, we proposed an algorithm for determining 
satisfiability of CPP queries under ShEx. The results of 
experiments suggest that we can save time by detecting 
unsatisfiable CPP queries before executing them. As a future 
work, we need to consider cyclic CPP queries and improving the 
efficiency of the algorithm. We plan to extend the algorithm to 
solve these issues. 
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