
 Tiako P.F. (ed) Automated Systems, Data, and Sustainable Computing. Chronicle of Computing. OkIP.

 © 2022 Oklahoma International Publishing https://doi.org/10.55432/978-1-6692-0001-7_2

7

Detecting Unsatisfiable Conjunctive Property Path under Shape Expression

Schema

Yuuki Maedaa and Nobutaka Suzukia*

aUniversity of Tsukuba, 1-2 Kasuga, Tsukuba, 305-8550, Japan

ABSTRACT

Shape Expression (ShEx) is a novel schema language proposed for

RDF/graph data. For a ShEx schema S and a query q, q is said to be

unsatisfiable if for any valid data D under S q reports an empty answer

over D. In general, the size of RDF/graph data is very large, and thus

it is inefficient to perform unsatisfiable queries on such data.

Therefore, it is desirable that we can detect unsatisfiable queries

efficiently before executing them. In this paper, we consider

Conjunctive Property Path, a generalization of Property Path defined

in SPARQL 1.1, as the query language. First, we propose an algorithm

for determining satisfiability of Conjunctive Property Path queries

under ShEx schema. Then we conducted a preliminary experiment,

which results suggest that the proposed algorithm determines if a

given Conjunctive Property Path query is satisfiable efficiently.

Keywords: graph data, RDF, Property Path, satisfiability

I. INTRODUCTION

For over years, RDF/graph is a popular data format widely
used for variety of areas, Linked Open Data, social graph,
biological network, and so on. In general, the sizes of such data
tend to be very large, and thus it is useless and time-consuming
to perform unsatisfiable queries over the data. Here, for a query
q and a schema S, q is unsatisfiable under S if for any valid data
D under S q reports an empty answer over D. Clearly, it is
desirable that we can detect unsatisfiable queries efficiently
before executing them.

In this paper, we consider a query satisfiability problem
under Shape Expression (ShEx). Here, ShEx is a novel schema
language for RDF data proposed by W3C Draft Community
Group (Baker, T. and Prud’hommeaux, 2019), and it is already
used in various areas (Thornton et al, 2019). ShEx shares a
number of core features with another novel schema language
Shapes Constraint Language (SHACL), therefore the result in
this paper can be applied to SHACL as well. As for query
language, we use Conjunctive Property Path (CPP). Here,
Property Path is a well-known path query language whose
specification is given in SPARQL 1.1, and a CPP query consists
of Property Path queries connected by conjunctive operators.

In this paper, we fist show that determining whether a CPP
query is satisfiable under a given ShEx schema is NP-hard. Then
we consider a slight restriction of CPP, acyclic CPP, and
propose a polynomial-time algorithm for determining whether a
given acyclic CPP query is satisfiable under a given ShEx
schema. In short, the algorithm decomposes a given CPP query
q into Property Path queries q1, q2, … , qn, and then checks

satisfiability of whole expression q by iteratively refineing the
types of S for which qi is satisfiable. We conducted a preliminary
experiment, which results suggest that the proposed algorithm
can determine whether a given CPP query is satisfiable
efficiently.

RELATED WORK

Query satisfiability has been a popular problem in database
management field. For example, a number of studies on XPath
satisfiability under DTD or XML Schema have been made, e.g.,
(Benedikt & Fan & Geerts, 2008; Figueira, 2018). However,
XML is modeled as ordered tree while RDF data is modeled as
unordered graph, and thus the studies cannot apply to
RDF/graph data. Zhang et al. consider satisfiability of SPARQL
pattern query without schema (Zhang et al., 2016). Matsuoka et
al. propose an algorithm for checking satisfiability of pattern
queries under ShEx schema (Matsuoka & Suzuki, 2020), where
the pattern query is a small fragment of our CPP query. To the
best of the authors’ knowledge, no studies on satisfiability of
CPP queries under ShEx schemas have been made so far.

II. PRELIMINARIES

Let Σ be a set of labels. A graph 𝐺 over Σ is denoted 𝐺 = (𝑉,
𝐸), where 𝑉 is a set of nodes and 𝐸 ⊆ 𝑉 × Σ × 𝑉 is a set of labeled
directed edges.

Unlike XML data model, in RDF/graph data model the order
among sibling nodes is less significant. Thus ShEx uses regular
bag expression (RBE) to represent node type (Staworko et al.,
2015) instead of regular expression. RBE is defined similar to
regular expressions except that RBE uses unordered
concatenation instead of ordered one. Let Γ be a set of types.
Then RBE over Σ × Γ is recursively defined as follows:

・𝜀 and a :: t ∈ Σ×Γ are RBEs.

・If r1, r2, …, rk are RBEs, then r1||r2||…||rk is an RBE, where

denotes unordered concatenation.

・If r1, r2, …, rk are RBEs, then r1|r2|…|rk is an RBE, where

denotes disjunction.

・If r is an RBE, then r?, r*, r+ are RBEs.

RBE r is disjunction-capsuled if every disjunctive expression

r1|r2|…|rk in r is enclosed by + or *. A ShEx schema is denoted

S = (Σ, Γ, 𝛿), where Γ is a set of types and 𝛿 is a function from Γ
to the set of RBEs over Σ × Γ. S is disjunction-capsuled if 𝛿(t)

* Corresponding author E-mail: nsuzuki@slis.tsukuba.ac.jp

8

is disjunction-capsuled for every t ∈ Γ. For example, let S =
(Σ, Γ, 𝛿) be a ShEx schema, where Σ= {takes, supervisor,
teaches}, Γ = {t1, t2, t3}, 𝛿(t1)=(takes::t2)*||(supervisor::t3)?,
𝛿(t2)= 𝜀, 𝛿(t3)=(teaches::t2)*. Then it is easy to verify that
the graph in Figure 1 is valid for S since each node conforms
to the type in color red.

Figure 1: example of valid graph

A Property Path over Σ is recursively defined as follows:

・𝜀, a ∈ Σ, and * are Property Paths.

・For a set {a1, a2, …, ak} of labels, !{a1, a2, …, ak} is a Property

Path that matches any label except a1, a2, …, ak.

・For any a ∈ Σ, a-1 is a Property Path, where -1 denotes inverse.

・If r1, r2, …, rk are Property Paths, then r1.r2.….rk and r1|r2|…
|rk are Property Paths.

・If r is a Property Path, then r?, r*, r+ are Property Paths.

A Conjunctive Property Path query (CPP query, for short)
is constructed by Property Paths with head and tail variables
connected by conjunctive operators. Formally, CPP query Q is
defined as follows:

Q = ∧i (xi, pi, yi),

where xi, yi are variables and pi is a Property Path. (xi, pi, yi) is
evaluated true over graph G if for some assignment xi ← v and
yi ← v’, G contains a path from v to v’ such that pi matches the
sequence of labels on the path. By Var(Q) we mean the set of
variables occurring in Q. Let G(Q) be the graph obtained by
regarding each variable and each CPP query (xi, pi, yi) as a node
and an edge from xi to yi labeled by “pi”, respectively. For query
(edge) (xi, pi, yi), xi is called head and yi is called tail. We say that
a CPP query Q is acyclic if G(Q) is acyclic.

 For a ShEx schema S and a CPP query Q, Q is satisfiable
under S if for some valid graph G of S, there is an assignment of
Var(Q) under which Q is evaluated true over G.

III. ALGORITHM

In this section, we first show the complexity of the
satisfiability problem briefly, then give an algorithm for solving
the problem. We have the following theorem.

Theorem 1: For a ShEx schems S and a CPP query Q,
determining whether Q is satisfiable under S is NP-hard.

Thus, in the following we impose some restrictions on S and Q;
we assume that S is disjunction-capsuled and that Q is acyclic.
Under the restrictions, we present a polynomial-time algorithm
for determining whether Q is satisfiable under S.

 In the algorithm, ShEx schema S = (Σ, Γ, 𝛿) is treated as an

NFA. Formally, the NFA of S is denoted MS = (Γ, Σ, Δ, nil, Γ),

where Γ is a set of states (types), Δ is a transition function such

that Δ(t,a) = {t’ | a::t’ appears in 𝛿(t)} for any t ∈ Γ and any a

∈ Σ, the start state is nil (the start state is specified during
execution of the algorithm), and the set of final states is Γ.

Let Q(x) be the set of Property Path queries in Q whose head
is x, that is,

Q(x) = {(xi, pi, yi) | xi = x and (xi, pi, yi) appears in Q}.

Let T:Var(Q) → 2Γ be an assignment to the variables in Q.
During execution of the algorithm, T(x) holds “valid” types for
x at each iteration; T(x) initially holds all the types of ShEx
schema S, and is gradually reduced until T(x) converges. The
one-step refinement of Q(x) under T over MS is a tuple (X, Y1, …,
Yn) of sets of types satisfying the following conditions:

1. X ⊆T(x) and Yi ⊆T(yi) for every 1 ≤ i ≤ n.

2. For every t ∈ X, for every 1 ≤ i ≤ n, and for every t’ ∈
Yi, t’ is reachable from t via pi over MS.

We now show the algorithm. We assume that there is a partial
order on Var(Q); x ≻ y if (x, p, y) ∈ Q.

Input: ShEx schema S = (Σ, Γ, 𝛿), CPP query Q
Output: satisfiable or unsatisfiable
1. Let MS be the NFA of S

2. T(x) ← Γ for every x ∈ Γ

3. Let G(Q) be the graph obtained from Q
4. Let x1,…,xn be the nodes (variables) in G(Q) having no

incoming edges
5. Let PQ be a priority que over Var(Q)
6. Add x1,…,xn to PQ
7. while PQ is nonempty do
8. x ← dequeue(PQ)
9. Let (x, p1, y1), …, (x, pn, yn) the Property Path queries in

Q(x). Compute the one-step refinement of Q(x) under T
over MS. Let (X, Y1, …, Yn) be the result.

10. if one of X, Y1, …, Yn is empty then
11. return unsatisfiable
12. T(x) ← X, T(y1) ← Y1, …, T(yn) ← Yn
13. for each z ∈ {x, y1, …, yn} do
14. if (z = x and X ⊊T(x)) or (z = yi and Yi ⊊T(yi)) then
15. if z != x then
16. Add z to PQ
17. Let (w1, p1, z), … , (wk, pk, z) be the incoming edges
 of z in G(Q) s.t. wi != x
18. Add w1, …, wk to PQ
19. return satisfiable

We use priority queue PQ over Var(Q), where the priority is
determined by the partial order ≻ over Var(Q) (ties are broken
arbitrarily). PQ holds variables that should be evaluated. Initially,
PQ holds x1,…,xn in G(Q) having no incoming edges (lines 4 to
6). Then we enter the while loop to evaluate each variable (lines
7 to 18). A variable x is picked up from PQ and then edges whose
head is x are evaluated (line 9). The one-step refinement is done
by traversing states of MS (details are omitted due to space
limitation). If some variable becomes empty, then Q is
unsatisfiable and the result is reported (lines 10 and 11).

9

Otherwise, the results of the one-step refinement are assigned to
T (line 12). If there is a variable z whose types are reduced, i.e.,
X ⊊T(x) or Yi ⊊T(yi), then we have to re-evaluate z and the
variables incident to z. Thus, z and head wi of edges having
z as the tail are added to PQ (lines 17 and 18). Finally, if the
evaluation converges without any variables being empty, then it
is reported that Q is satisfiable (line 19).

 The algorithm runs in polynomial time since (1) the one-step
evaluation can be done in polynomial time by traversing MS and
(2) each T(x) has at most |Γ| types and for each iteration of the
while loop at least one type is deleted from some T(x).

IV. EXPERIMENTAL RESULTS

We conducted a preliminary experiment on the algorithm.
All experiments were executed on a machine with Intel Core i5
CPU 2.3 GHz dual-core, 8.00GB RAM, MacOS Big Sur 11.4.

In the experiment, we need unsatisfiable CPP queries. Thus,
we made a Ruby program that automatically generates CPP
queries by randomly combining multiple labels and then
randomly concatenates them. Length (i.e., the number of
Property Paths) of CPP query, length of Property Paths, shape
of CPP query (straight or DAG), and probability of assigning
operator (?, *, +) to label can be specified.

We implemented the algorithm using Ruby, and generated
N3 data by SP2Bench (Schmidt et al., 2008) consisting of 10000
triples (1.64MB). We also created a ShEx schema for
SP2Bench. Using the ShEx schema, the CPP queries, and the
data, we first executed the proposed algorithm to check
satisfiability of the CPP queries under the ShEx schema. We also
executed the CPP queries over the data. Each CPP query was
processed by Ruby SPARQL library.

Figure 2: experimental result of simpler case

Figures 2 and 3 show the results. Figure 2 shows a simpler
case, where each CPP query has no operator, each CPP query is
of length 3 to 7, the shape of each CPP query is straight, and the
length of each Property Path is 10 (i.e., each CPP query is of
length 30 to 70). Here, for a CPP query Q = ∧i (xi, pi, yi), we say
that Q is straight if yi = xi+1 for every i. Figure 3 shows a more
general case, where an operator is assigned to a label with
probability 5%, each CPP query consists of 3 to 7 Property Paths,
the shape of each CPP query is DAG, and the length of each
Property Path is 5. In both cases, for each length of CPP query,
we generated 10 different CPP queries and measured the average
execution time of them.

Figure 3: experimental result of more general case

From these results, we can see that the proposed algorithm
can detect unsatisfiable queries more efficiently, compared to
performing CPP queries over the RDF data. This means that by
detecting unsatisfiable CPP queries before execution, we can
safely save time for executing CPP queries, and even if executed
query is satisfiable, the time loss for running the algorithm is
very limited. In addition, in the latter case, the execution time to
perform CPP queries increases significantly, while the increase
in execution time of the proposed algorithm is negligible.

V. CONCLUSION

In this paper, we proposed an algorithm for determining
satisfiability of CPP queries under ShEx. The results of
experiments suggest that we can save time by detecting
unsatisfiable CPP queries before executing them. As a future
work, we need to consider cyclic CPP queries and improving the
efficiency of the algorithm. We plan to extend the algorithm to
solve these issues.

ACKNOWLEDGMENT

This work was partly supported by JSPS KAKENHI Grant
Number 21K11900.

REFERENCES

Baker, T. and Prud’hommeaux, E. (2019). Shape Expression (ShEx)

primer.http://shexspec.github.io/primer/.
Benedikt, M., Fan, W., and Geerts, F. (2008). XPath satisfiability in the

presence of DTDs. J. ACM, 55(2):8:1– 8:79.
Figueira, D. (2018). Satisfiability of XPath on data trees. ACM SIGLOG News,

5(2):4–16.

Matsuoka, S. and Suzuki, N. (2020). Detecting unsatisfiable pattern queries

under shape expression schema, Proceedings of the 16th International

Conference on Web Information Systems and Technologies, 285–291.

Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C. (2008). SP2Bench: a
SPARQL performance bench- mark. Proceedings of ICDE, 371–393.

Staworko, S., Boneva, I., Labra Gayo, J. nad Hym, S., Prud’hommeaux, E., and

Sorbrig., H. (2015). Complexity and expressiveness of ShEx for RDF.
Proceedings of 18th International Conference on Database Theory, 195–

211.

Thornton, K., Solbrig, H., Stupp, G. S., Labra Gayo, J. E., Mietchen, D.,
Prud’hommeaux, E., and Waagmeester, A. (2019). Using shape

expressions (ShEx) to share RDF data models and to guide curation with

rigorous validation. In Hitzler, P., Fernandez, M., Janowicz, K., Zaveri,
A., Gray, A. J., Lopez, V., Haller, A., and Hammar, K., editors,

Proceedings of the European Semantic Web Conference, pages 606–620.

Zhang, X., den Bussche, J. V., and Picalausa, F. (2016). On the satisfiability
problem for SPARQL patterns. Journal of Artificial Intelligence Research,

55:403–428.

