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Abstract— Developing an effective and accurate battery 

management system that can predict the state of charge of 

electric vehicles is essential to enhance the safety and efficiency 

of electric vehicles. The assessment of the state of charge of the 

battery is important not only for determining the amount of 

energy that is available from the battery but also for 

determining how long the battery will last. This paper provides 

a brief understanding of how the state of charge estimation was 

predicted before and after the era of Machine Learning (ML). 

In addition, it proposes an accurate and fast state of charge 

estimation for lithium-ion batteries in electric vehicle 

applications using machine learning. The proposed model is 

designed to be generalizable across various inputs, applicable to 

both new and old batteries, and robust under different charging 

and discharging scenarios. Model performance and accuracy 

were evaluated using predefined metrics such as Root Mean 

Square Error and Mean Absolute Error. Among the four 

machine learning algorithms that achieved an approximate 

error of 0.75, while Multiple Linear Regression (MLR) model 

was chosen for its lightness and speed in training and testing. 

The findings of this research contribute to the advancement of 

Battery Management System (BMS) design and implementation 

for enhancing the efficiency and safety of Lithium-Ion Batteries 

(LIBs) in real-world driving scenarios. In the future, further 

research might be conducted to study the implementation of a 

variety of deep learning algorithms, as well as the estimation of 

battery health and the remaining useful life. 

Keywords— battery management system, electric vehicles, 

state of charge, machine learning, and lithium-ion batteries  

I. INTRODUCTION 

Lithium-Ion Batteries (LIBs) have proven to be the most 
efficient and popular energy storage option in Electric 
Vehicles (EVs). Extensive research and development have 
been conducted to improve their safety, dependability, and 
durability [1], [2]. This indicates a bright future for LIB usage 
in EVs and other vehicles and makes it an ideal research 
subject. LIBs possess distinct characteristics such as high 
efficiency, extended cycle life, low discharge rate, and high 
output voltage. Because LIBs are efficient at achieving 
increased performance over time, special consideration must 
be given to their working conditions to reduce physical 
damage, aging, and thermal runaways. As a result, there is a 

pressing need to develop a Battery Management System 
(BMS) capable of precisely monitoring, estimating, and 
managing battery SOC, among other statuses [3]. An energy 
management system and control are essential for any electric 
vehicle that uses batteries to improve efficiency on the road. 
This can only happen if power is continuously transferred 
from the energy storage system to the wheels of the car in 
response to actual demand [4]. 

BMSs are widely used in a variety of portable electrical 
and electronic devices; however, BMS implementation in EVs 
is still in its early stages due to the significant difference in 
cell count and power ratings between EVs and small-scale 
devices. The BMS continuously monitors the current, voltage, 
and temperature to obtain the battery parameters (e.g., 
operational voltage, current, power consumption, State of 
Charge (SOC), aging, internal impedance, ambient 
temperature, etc.) to keep the battery within its safe limits 
during charging and discharging [5]. Thus, one of the primary 
considerations is safeguarding the batteries and EVs from 
thermal runaways and explosions. Accurately predicting the 
battery's remaining range is also crucial, particularly since 
long-distance travel can result in discharges of up to 80% or 
higher [6]. As a result, proper battery protection is critical 
during charging and discharging. To maximize the battery's 
efficiency and safety, a highly effective BMS capable of 
predicting SOC and other critical battery functions is essential. 

Recently, there has been a surge in academic and research 

interest in developing SOC estimation models using machine 

learning (ML) techniques [7]. The primary objective of this 

study is to develop a highly efficient SOC estimation model 

that can be integrated along with the BMS to enhance EV 

performance. To achieve this goal, a comprehensive analysis 

of the Panasonic18650PF Li-ion battery dataset [8] was 

conducted to evaluate the proposed SOC estimation model's 

effectiveness. The efficacy of four distinct ML models was 

analyzed, and their performance was benchmarked against 

each other. The results demonstrate that proper data 

preparation, even with simpler ML algorithms, can 

outperform complex models in prediction accuracy, 

highlighting its potential to significantly advance the field of 

EV BMS. 
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A. Literature Review 

Researchers in [9] introduced SOC Estimation for LIBs 
using Deep Forward Networks (DFNN) with the flexibility of 
choosing between two or four hidden layers. They evaluated 
their model's performance on the Panasonic 18650PF dataset. 
Their proposed models were only evaluated by Mean 
Absolute Error (MAE). The proposed two hidden layers 
model demonstrated an MAE of 1.60%, while the one with 
four hidden layers achieved 2.0%. In [10], researchers also 
proposed SOC Estimation for LIBs using DFNN but with two 
hidden layers only. Panasonic 18650PF dataset has also been 
utilized to evaluate the model's performance. Their proposed 
model was evaluated using MAE only and achieved 1.1%. 
Academics in [11], proposed SOC Estimation for LIB using 
DNN with five hidden layers. They evaluated the model's 
performance on the earlier-mentioned dataset. Their model 
was assessed by two metrics and demonstrated an MAE of 
0.24% and a Mean Square Error (MSE) of 0.11%. The 
scholars in [7], proposed four distinct models to estimate SOC 
for Li-ion batteries using Multi-Layer Regression (MLR), 
Multi-Layer Perceptron (MLP), Support Vector Regression 
(SVR), and Random Forest (RF). Their proposed models were 
also tested on the Panasonic 18650PF dataset. Their suggested 
models showed corresponding MAEs for MLR, MLP, SVR, 
and RF of 3.16%, 3.18%, 3.10%, and 0.82%. Furthermore, 
these models' Root Mean Square Error (RMSE) values were 
4.32%, 4.21%, 4.30%, and 1.44%, respectively. 

Following on the previously mentioned works done to 
build an efficient SOC estimation model, and evaluated using 
the Panasonic 18650PF, it can be seen that they suffer from 
the following: 

1) Utilizing Deep Learning (DL) models inefficiently 

where complex models were applied in an insufficient way 

which results in a medium to low prediction model 

performance, or a time-consuming model. 

2) Extra hidden layers in DL models do not implicitly 

indicate a better model performance. On the other hand, it 

might only increase complexity and time consumption. 

3) Employing classical ML algorithms without proper 

data analysis and preparation. This results in a poor 

performance model.  

The contribution of this paper is as follows:  

1) Provide a brief understanding of how the SOC 

estimation was predicted before and after the era of ML. 

2) Build and propose four SOC estimation models 

employing MLR, SVR, RF, and MLP, and verifying them 

using the Panasonic 18650PF dataset. 

3) Evaluate the performance of the proposed models 

considering the several prediction errors, learning, and 

prediction speed. 

The remaining part of this paper is organized as follows: 
Section 2 provides a brief understanding of how SOC 
estimation was predicted before and after the era of ML. 
Section 3 illustrates the proposed methodology implemented 
to build an efficient SOC estimation model. Results and 
discussion will be presented in Section 4. Lastly, Section 5 
concludes with the conclusion and final remarks. 

II. STATE-OF-CHARGE DEFINITION AND ESTIMATION BEFORE 

AND AFTER THE ERA OF ML 

SOC is the proportion of a battery's remaining charge 
capacity in relation to its maximum capacity when fully 
charged [12]. The amount of capacity left in the battery, which 
is equivalent to the fuel gauge in ordinary vehicles, is a crucial 
factor in the driving experience as represented in Eq.1. 

 𝑆𝑂𝐶 = 1 − 
∫ 𝑖 𝑑𝑡

𝐶𝑛
 () 

Where ‘I’ is the current either charging or discharging. ‘dt’ 
is the infinitesimal time interval. ‘C_n’ is the nominal capacity 
of the battery. 

The C_n steadily declines over time due to variations in 
external load and the battery's internal chemical reactions, 
resulting in non-stationary and non-linear battery degradation 
characteristics. Furthermore, significant SOC errors may 
occur because of terminal reading build-up, necessitating 
periodic value recalibration [13]. 

A battery's SOC reflects its usable capacity, and it is one 
of the most important states to monitor in a battery to optimize 
performance and extend battery life. Accurate SOC estimation 
can help drivers make informed decisions about their vehicle's 
charging schedule. It also supports the BMS to prevent 
overcharging and over-discharging, both of which can be 
dangerous [14]. 

A. SOC Estimation Methods 

Many researchers have been interested in SOC estimation, 
and numerous alternative approaches have been proposed 
[15]. Method categorization is a difficult process because most 
approaches involve the integration of two or more approaches 
as well as the use of various heuristic or deterministic 
mathematical tools [12]. However, before the era of ML, SOC 
estimation methods were classified into two main ways: 
conventional, and model-based methods. After the evolution 
of ML and it is revolutionary effectiveness on real-world 
applications [16], data-driven methods came into the picture 
to support building ML models. 

1) Conventional Estimation Methods: Coulomb-

counting, Open-circuit Voltage, and Impedance 

Spectroscopy are examples of conventional estimation 

methods. The theory behind these models is based on 

experimental testing to determine the electric components 

(impedances, resistances, capacitors, etc.) that make up the 

presumed equivalent circuit models that represent the battery 

[17]. 

2) Model-based Estimation Methods: Model-based SOC 

estimation strategies, also known as white-box models, are 

created with a knowledge of the underlying processes in 

mind. The traditional method is the model-based method, 

which can solve a wide range of problems, particularly in the 

engineering field. This approach typically requires the 

practitioner to have an extensive understanding of the system 

or the process to build robust rules that accurately mimic the 

system's behavior. Because of that, model-based SOC 

estimation techniques may be extremely powerful and 

precise[18]. 

3) Data-driven Estimation Methods: In contrast, with the 

evolution of ML, a recent methodology based on data made 
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it possible to verify and witness the effectiveness of ML in 

the field of BMS. This method becomes more popular with 

the availability of robust computers and vast volumes of data. 

Data-driven techniques, also known as black-box models, are 

built on real-world data with little or no understanding of the 

underlying processes. Because the data-driven technique is 

heavily reliant on analyzing process data, practitioners are not 

required to have a comprehensive, domain-specific 

knowledge of the underlying procedure. This method can be 

used to build a SOC estimation model with little prior 

knowledge of the battery's internal characteristics and 

chemical interactions. However, because data-driven 

techniques rely heavily on data, the accuracy and usefulness 

of the model are heavily influenced by data quality. 

Unbalanced data, for example, could cause a model's 

decision-making process to be biased [10].  

III. RESEARCH METHODOLOGY 

Fig. 2 illustrates the applied measures to build the most 
effective SOC estimation model. The methodology begins 
with dataset analysis and ends with evaluation metrics. This 
section details the steps taken to develop the SOC estimation 
system, starting with a description of the selected dataset, 
followed by the procedures used for preparing and processing 
the dataset to make it ready for the chosen ML algorithms. 
Finally, the section concludes with an overview of the ML 
models and evaluation criteria used to assess the proposed 
model. 

 

Fig. 2. The workflow of the SOC estimation model utilizing ML. 

A. Dataset Description and Analysis 

The Panasonic18650PF Li-ion battery dataset used in this 
study was generated by researchers in [8]. This dataset is very 
useful for evaluating and testing the effectiveness of any ML 
model, as it contains a variety of attributes that can be used as 
input features for the proposed model based on the battery test. 
Voltage, current, battery temperature, power in Wh, and 
capacity in Ah are all included in the dataset. The drive cycles 
in this dataset include the US06, HWFET, UDDS, and LA92, 
as well as mixed cycles and charging and discharging tests. It 
has six temperatures for each type: -10°C, -20°C, 0°C, 10°C, 
25°C, and 40°C, for a total of 24 driving cycles, six mixed 
cycles, and six charge tests. This dataset was chosen for its 
reliability and prior use in several studies, as cited in the 
literature. This facilitates evaluating the model's effectiveness 
and making valid comparisons. Before starting the preparation 
and processing, the feature distribution was analyzed. Fig. 3. 
illustrates the histogram of feature distributions where 
‘Voltage’ and ‘WhAccu’ have many lower values, while 
‘Temperature’ has multiple peaks, indicating diverse 
operating conditions. On the other hand, ‘Current’ and 
‘Capacity’ sample distributions are close to normal, with some 
outliers visible. 

1) Dataset Preparation: Data preparation is crucial for 

building any effective ML model. It involves several steps: 

data preprocessing, data cleaning, data transformation, 

feature selection, and data splitting. This section will go 

through the steps taken to build the final model [19]. 

2) Data Preprocessing: Measurement noise in collected 

data is inevitable when using sensors, making data 

preprocessing a critical first step in ML modeling. To reduce 

the needed time to extract useful information from each data 

file. An automated code has been created to extract the useful 

features from dataset sets such as voltage, current, 

temperature, power, and finally capacity, and then reformat 

everything and add the header in a CSV file. 

3) Data Cleaning: Data cleaning is vital for removing 

outliers, corrupted data, or missing points. It began by 

cleaning the chosen dataset, removing duplicates, and 

missing points, and then removing outliers using the IQR test. 

Finally, outliers were checked using the box plot as shown in 

Fig. 3, which shows the effectiveness of the cleaning steps 

taken. 

 
Fig. 3. Features box plot after cleaning the outlier samples. 

4) Data transformation: Data transformation is typically 

necessary when the dataset contains data in various formats 

or when multiple datasets are combined. In this scenario, a 

MinMax scalar was implemented, which resulted in rescaling 

the data to a range between 0 and 1. This assisted in reducing 

the model's sensitivity to the feature scale [20]. 

5) Feature Selection: Feature selection is critical in the 

model-building process. The presence of correlated and 

insignificant characteristics reduces the model's performance. 

The process began by removing the time stamp and power 

properties. The power was removed because of its direct 

relationship to both current and voltage, as the correlation 

between the inputs could disrupt model performance. 

‘Voltage’, ‘Current’, ‘Temperature’, ‘Power in Wh’, and 

Fig 1. Panasonic LG Li-ion battery dataset feature distributions. 
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‘State of Charge’ in Ah are all possible characteristics. The 

correlation between features was then analyzed as Fig. 4, 

which provided the significance of all attributes, and all 

features as input were significantly correlated with the SOC. 

As a result, all the remaining parameters were used as inputs 

to the model (‘Voltage,’ ‘Current,’ and ‘Temperature’), with 

the SOC as the output. 

 
Fig. 4.Features box plot after cleaning the outlier samples. 

6) Data Splitting: The dataset was then divided into X 

and Y columns, where X represents the independent variable, 

model inputs, and Y represents the dependent variable, model 

output. The independent and dependent variables were then 

divided into training and testing sets. The training set was 

used to train the model, while the test set was used to evaluate 

the model's performance on new data. Due to the large size 

of the chosen datasets, the dataset was divided into 80% 

training and 20% testing for both X and Y using the hold-out 

method. This strategy is appropriate if the goal is to compare 

models on the test dataset based on model accuracy and select 

the best model. 

B. Machine Learning Training 

Four different ML algorithms were utilized, and their 
performances were tested and compared. The choice of 
algorithms was based on their actual performance post-
implementation. Supervised learning algorithms were 
employed because the available data is already labeled and 
does not require additional labeling efforts. 

In addition, the model's output is the SOC, which is a 
continuous value. Thus, using regression algorithms is 
appropriate in this case. After a review of the literature, the 
following four algorithms were employed: Multilayer 
Perceptron (MLP), Support Vector Machine (SVR), Linear 
Regression (LR), and Random Forest (RF). 

1) Multiple Linear Regression (MLR): MLR is a simple 

linear regression extension in which the algorithm seeks the 

best straight-line fit between the multiple inputs and the 

output. The following relation maps the inputs Xn to the 

predicted value Ŷ as shown in Eq. 2: 

 Ŷ = 𝑏0 + 𝑏1𝑋1 + ⋯ + 𝑏𝑛𝑋𝑛 () 

The coefficients bn are determined during the model's 
training to minimize prediction errors relative to the actual 
output. The default MLR was utilized for the proposed model. 

2) Support Vector Regression (SVR): SVR is 

conceptually similar to Support Vector Machine in that it 

establishes a decision boundary between different classes. 

Instead of classifying the observations, it finds a linear 

function for regression. It is defined as an optimization 

problem that begins with the creation of a convex-insensitive 

loss function to be minimized and ends with determining the 

flattest tube containing most of the training cases. The default 

MLR was utilized for the proposed model. 

3) Random Forest (RF): The RF algorithm is a 

supervised ML algorithm that can be used for classification 

as well as regression. It makes use of ensemble learning, a 

technique that combines multiple classifiers to provide 

accurate predictions in complex situations. The prediction is 

made by RF algorithms using bagging or bootstrap 

aggregation on the results of multiple decision trees. The RF 

used consists of 100 trees to make predictions. 

4) Multilayer Perceptron (MLP): The MLP is a type of 

neural network, which is a universal approximator that can 

map any relationship between a system's inputs and outputs, 

regardless of its complexity. Its working principle is based on 

the human brain, assigning weights (w) to each input to 

indicate its significance to the output during training. Each 

node is referred to as a neuron and has its activation function. 

The number of neurons, network layers, and activation 

functions all vary depending on the application and impact 

model prediction performance. The MLP utilized has one 

hidden layer with 100 neurons, where it attempts to learn up 

to 500 times to find the best solution. 

C. Model Evaluation 

Performance metrics were employed to compare and 
evaluate model prediction accuracy. The SOC estimation 
output in the intended application is a continuous value. Thus, 
all performance metrics are for regression and not 
classification. There are several methods for evaluating: 

1) The Mean Absolute Percentage Error (MAPE) 

measures the accuracy of a prediction system. It expresses 

this accuracy as a percentage and is calculated as the average 

absolute percent error for each period minus actual values 

divided by actual values. The lower the MAPE number, the 

better a model can forecast values, as shown in Eq. 3: 

 𝑀𝐴𝑃𝐸 =
1

𝑛
∑ ∣

𝐴𝑡−𝐹𝑡

𝐴𝑡
∣

𝑛

𝑡=1
× 100% () 

Where At represents the actual value, and Ft represents 

the forecast value. Their difference is divided by At. The 

absolute value of this ratio is summed for every forecasted 

point in time and divided by the number of fitted points n1. 

2) Root Mean Square Error (RMSE) is the square root of 

MSE. It calculates the standard deviation of the residuals 

from the model's fit line. The RMSE statistic provides 

information on a model's short-term performance by allowing 

a term-by-term comparison of the actual difference between 

estimated and measured values. The lower the value, as with 
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MSE, the better the model's performance. Where n is the 

number of data points in both equations, as shown in Eq. 4: 

 𝑅𝑀𝑆𝐸 =  √
∑ =1 𝑛

𝑖 (𝑃𝑖−𝑂𝑖)2

𝑛
 () 

Where Pi is the predicted value, and Oi is the observed 
value for the ith observation in the dataset. The sample size is 
defined by n. 

3) The mean absolute error (MAE), like the previous two 

metrics, measures the error for continuous predictions, as 

shown in Eq.5: 

 MAE =
1

𝑛
∑ ∣ 𝑦𝑖 − �̂�𝑖 ∣𝑛

𝑖=1  () 

Where yi is the actual value, y^i is the predicted value, 

and n is the number of observations. 

IV. RESULT AND DISCUSSION 

Table 1 demonstrates the exceptional performance of the 
four proposed models. Even though they all share similar low 
errors, their computing time and resources required differ. A 
high performance of MLR indicates that the dataset is well 
prepared and processed. Where powerful algorithms such as 
MLP, SVR, and RF can manage certain levels of unprocessed 
and complex datasets. However, this will come at the cost of 
the utilized resources and time consumed. 

TABLE 1. PERFORMANCE EVALUATION OF THE FOUR PROPOSED 

MODELS 

Model/Error MAE MAPE RMSE R2 

Training 

Time 

(sec) 

Testing 

Time 

(sec) 

MLR 0.75 0.7% 1.2% 0.87 1 0.01 

MLP 0.73 0.75% 1.05% 0.89 517 4 

SVR 0.7 0.8% 0.975% 0.90 990 12 

RF 0.7 0.72% 1.05% 0.88 490 8 

Table 1 presents the remarkable efficacy of the four 
suggested models in estimating SOC. An exceptionally high 
degree of performance was noted for the four models (MLR, 
MLP, SVR, and RF). With MAE in the range between 0.7 to 
0.75, every model showed remarkable precision. These 
outcomes show how carefully the dataset was prepared and 
processed to guarantee the highest possible quality. 

The computing efficiency of the implanted algorithms 
varied, though, even though their accuracy levels were 
comparable. One second was all that the MLR model needed 
to train and 0.01 seconds to evaluate, which made it stand out 
for its exceptional speed. On the other hand, more 
sophisticated models like MLP, SVR, and RF took a lot longer 
to train and test. MLP and SVR took more than 500 and 990 
seconds, respectively. 

The MLR model's low resource requirements and 
computational efficiency make it particularly suitable for real-
time SOC estimation in battery management systems (BMS) 
for electric vehicles (EVs). This efficiency allows the MLR 
model to be integrated into existing BMS without significant 
hardware upgrades. The successful data pretreatment efforts 

are attested to by the good MLR performance, indicating that 
the dataset is suitable for linear modeling. 

In cases where the data has been prepared thoroughly, the 
simplicity and speed of MLR provide a significant advantage. 
It attains high performance without the computational burden 
posed by more complex models. This choice underscores the 
value of thorough data preparation, which can often reduce the 
need for more elaborate modeling techniques. 

However, it is important to note that while the MLR model 
offers computational efficiency, it may not capture the full 
complexity of relationships between variables in more 
intricate datasets. This limitation could affect accuracy in 
scenarios involving extreme conditions or irregular usage 
patterns. Furthermore, the dataset used is specific to the 
Panasonic18650PF Li-ion battery, which may limit the 
generalizability of the models to other battery types or 
configurations. 

Further investigation, the Violin plot of residuals for the 
MLR was plotted to demonstrate the distribution of the errors 
(residuals) as shown in Fig. 5. It can be seen clearly that 
residuals are concentrated around zero, which indicates the 
high accuracy of the model predictions. In addition, Fig. 6 
represents the MLR model prediction error plot, which shows 
the difference between the actual and prediction values. The 
residuals are fairly distributed around the horizontal line 
which indicates a well-performed model in most of the cases. 

 
Fig. 5. MLR Violin plot of residuals. 

 

Fig. 6. MLR prediction error plot. 
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V. CONCLUSION 

In conclusion, providing an efficient SOC estimation for 
electric vehicles is of utmost importance for several reasons 
such as preventing disastrous situations, and enhancing diver 
experience. This work contributes to the field by providing a 
brief understanding of how SOC estimation was predicted 
before and after the era of ML. The findings underscore the 
critical role that accurate SOC estimation plays not only in 
vehicle performance but also in the safety and reliability of 
electric vehicles, which is increasingly important as the 
adoption of EVs continues to grow globally. 

Adding to that, Four ML-based SOC models using the 
Panasonic 18650PF dataset were tested and evaluated. The 
performance of these models was assessed and compared, 
highlighting their superiority over existing literature. Notably, 
MLR, MLP, SVR, and RF achieved comparable results in 
MAE with approximately 0.7, where MLR was the fastest in 
both training and testing, thus chosen. These results indicate 
that while traditional methods may still have merit, machine 
learning approaches offer significant advantages in terms of 
speed and accuracy, paving the way for their adoption in real-
world applications. 

Moving forward, it is essential to explore the integration 
of various deep learning algorithms that can potentially 
enhance prediction accuracy, particularly in more complex 
scenarios. Additionally, investigating battery health 
assessment and remaining useful life estimation could provide 
more comprehensive insights into battery performance and 
longevity. Such research could significantly impact the 
development of smarter, more efficient battery management 
systems, ultimately contributing to the sustainability and 
reliability of electric vehicles. Future studies should also 
consider diverse datasets, including various battery 
chemistries and configurations, to enhance the 
generalizability of the models. 
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