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ABSTRACT  

The integration of artificial intelligence (AI) into materials science is 

profoundly transforming polymer discovery, manufacturing and quality 

control. This study explores the potential of AI-based approaches in 

three key areas: (1) prediction of polymer properties using advanced 

models such as PolymerGNN and PolyBERT, (2) optimization of 

industrial processes via reinforcement learning to improve energy 

efficiency and material quality, and (3) automatic defect detection using 

computer vision models such as YOLOv8 and Faster R-CNN. 

Experimental results show significant improvements in terms of 

prediction accuracy, energy consumption reduction (10-25%) and 

defect identification efficiency. Despite these advances, challenges 

remain, notably data quality, model interpretability and integration 

into industrial processes. This study highlights the transformative 

impact of AI on polymer science, and provides an analysis of the 

performance of applied models. 
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I. INTRODUCTION  

Artificial intelligence (AI) is revolutionizing polymer 

engineering by improving property prediction, manufacturing 

process optimization and quality control. The integration of 

machine learning and computer vision models is accelerating the 

discovery of new polymers with optimized mechanical and 

thermal properties, while ensuring more efficient and 

sustainable production (Ferrari et al., 2023). 

However, despite these advances, a major challenge persists: 

how can AI be effectively harnessed to improve polymer design, 

manufacture and evaluation, while guaranteeing reliable, 

industrializable results? Indeed, the application of AI in this field 

faces several obstacles, including data availability and quality, 

model interpretability and adaptation to industrial requirements 

(Agrawal et al., 2019; Oviedo et al., 2021). 

In this work, we have explored three major avenues to address 

this issue. Firstly, predictive models based on PolyBERT, DNN 

and PolymerGNN were used to estimate polymer properties 

from their molecular structure (Queen et al., 2023; Zhang et al. 

2022) . Next, we evaluated the impact of industrial process 

optimization via reinforcement learning, enabling a significant 

reduction in energy consumption (Sharma & Liu, 2024). Finally, 

we implemented an automatic defect detection approach using 

the YOLOv8 and Faster R-CNN models, ensuring faster and 

more accurate quality control of polymers in production (Chen 

et al., 2023). 

This study highlights the potential of AI-based approaches to 

optimize polymer management and offers an in-depth analysis 

of the performance of models applied to these issues. 

II.  RELATED WORK 

Accelerating the discovery of high-performance polymers, 

optimizing their manufacture and guaranteeing their quality with 

precision: challenges that were once time-consuming and costly, 

now transformed by AI. Thanks to recent advances in machine 

learning, polymer research now relies on predictive models 

capable of exploiting complex databases and simulating 

properties on an unprecedented scale. 

Graph Neural Networks (GNN) and Transformer models can be 

used to anticipate the chemical and mechanical properties of 

polymers with great precision (Aldeghi et al.; 2022 ; Zhang et 

al., 2022). PolymerGNN facilitates the exploration of new 

materials, paving the way for novel applications (Queen et al., 

2023). 

 

In industry, optimizing manufacturing processes via AI enables 

a reduction in energy consumption and an improvement in 

polymer quality (Sharma & Liu, 2024). At the same time, 

computer vision is revolutionizing quality control, making 

inspection faster and more reliable (Chen et al., 2023 ; Duan et 

al., 2017). 

 

However, these advances still face critical challenges: the 

quality and diversity of databases strongly influence the 

reliability of models (Agrawal et al., 2019), and the 

interpretability of algorithms remains a major obstacle to their 

industrial adoption (Oviedo et al., 2021). 
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III. METHODOLOGY 

The application of AI to polymers is based on three major axes: 

property modeling, industrial process optimization and defect 

detection. 

A.  Modeling polymer properties 

Machine learning enables the properties of polymers to be 

predicted from their molecular structure. PolymerGNN, 

introduced by (Queen et al. (2023)), exploits graphical neural 

networks (GNN) to establish these relationships. Furthermore, 

(Zhang et al. (2022)) have developed PUFp, an approach based 

on polymer fingerprints, improving prediction accuracy. 

In this study, we combine deep neural networks (DNNs) and 

Transformer models, notably PolyBERT, which converts 

chemical structure into a format that can be exploited by AI 

(Kuennethet al.; 2022). This approach makes it possible to 

exploit advanced molecular representations to refine predictions 

of the mechanical and thermal properties of polymers (Figure 1) 

. 

 
 

   Figure 1: AI-based polymer property prediction pipeline 
 

B.  Optimizing industrial processes 

AI optimizes polymer manufacturing by dynamically adjusting 

production parameters to reduce energy consumption and 

improve material quality. (Sharma et al,. (2024))  have shown 

that machine learning applied to polyolefin manufacturing 

processes improves energy efficiency and reduces production 

errors . Furthermore, (Zhou et al. (2017) demonstrated that 

reinforcement learning can optimize in real time the co have 

used reinforcement learning to adapt polymer synthesis 

conditions in real time, guaranteeing improved stability and 

performance. 

Process optimization follows three key stages (Tableau 1): data 

collection, AI optimization and experimental validation. AI 

exploits advanced reinforcement learning algorithms, including 

Proximal Policy Optimization (PPO) and Deep Deterministic 

Policy Gradient (DDPG), to dynamically adjust critical 

parameters such as temperature, pressure and catalysts. 

 

 

Step Description 

Data Collection Retrieval of manufacturing parameters 

(temperature, pressure, catalysts, 

reaction speed). 

AI Optimization Use of AI models (reinforcement 

learning) to dynamically adjust 

experimental conditions. 

 

Laboratory 

Validation 

Verification of the performance of 

optimized polymers through 

mechanical and chemical tests. 

      

       Tableau 1 : Industrial process optimization steps 

 

C.  Detection and quality control 

Automated inspection of polymers is essential to ensure their 

reliability in production. To this end, we use YOLOv8 for rapid 

defect identification in industrial environments and Faster R-

CNN for more detailed analysis in the laboratory (Ren et al., 

2015). 

The process follows three steps: high-resolution image 

acquisition, data pre-processing to improve image quality, and 

then defect detection and classification according to the model 

employed. These methods are widely adopted in industry, 

particularly for quality control of complex surfaces. 

IV.  RESULTS AND ANALYSIS 

Experimental results demonstrate the effectiveness of AI models 

in modeling polymer properties, optimizing industrial processes 

and detecting defects. 

A.  Modeling polymer properties 

AI was used to establish a correlation between actual and 

predicted values of polymer properties (Figure 2&3). The 

PolyBERT, DNN and PolymerGNN models were evaluated, and 

the results show a strong correlation with the reference line (y = 

x), indicating good predictive capability of the models. 



3 

 

 

Figure 2: Correlation between IA models 

 

  Figure 3: RMSE error comparison  

B.  Industrial process optimization 

AI-assisted optimization has enabled a significant reduction in 

energy consumption, with an estimated reduction of between 10 

and 25% depending on the simulations and tests carried out  

(Figure 4). 

 

  Figure 4: Improving energy efficiency with AI 

C.  Detection and quality control 

 

The approach based on YOLOv8 and Faster R-CNN was used 

for polymer defect detection (Figure 5,6&7). YOLOv8 has an 

execution speed of 80 FPS, while Faster R-CNN is more 

accurate at 11 FPS. 

 

 
 

Figure 5: polymer image before detection 

 

 
 

 Figure 6: Détection des défauts avec YOLOv8 
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   Figure 7: Comparing the performance of AI models 

V.  DISCUSSION AND CONCLUSION 

The results obtained confirm the potential of AI models to 

improve understanding and prediction of polymer properties, 

optimize manufacturing and enhance quality control. However, 

challenges remain, particularly in terms of data quality, model 

interpretability and integration in industrial environments. 
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