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ABSTRACT  

The efficacy of renewable energy systems rests heavily on solar 

irradiance and temperature. In reality, however, these data tend to be 

under or unavailable in certain areas, making accurate design, 

modeling, and analysis of renewable energy systems unfathomably 

problematic. This paper discusses the creation and evaluation of novel 

synthetic climatic models aimed at providing region-specific realistic 

climatic data. These models utilize highly advanced statistical and 

machine learning algorithms combined with solar irradiance and 

temperature models to capture and integrate solar irradiance and 

temperature data with relative high temporal and spatial resolution. 

Models’ extensive validation against real climatic datasets 

considerably increased their reliability and robustness under various 

conditions including extreme and less plausible scenarios. These 

results highlight the ability of the models to close the gap posed by the 

utter absence of reliable, region accurate data in supplementing 

renewable energies. Such findings are greatly beneficial for improving 

energy yield forecast, system design, and performance monitoring and 

evaluation for areas with scarce data resources.  

Keywords: Synthetic climatic models, Renewable energy 

applications, Solar irradiance simulation, Temperature prediction, 

Energy system optimization Data-constrained environments. 

I. INTRODUCTION  

A. Background of the Study 

The motivations behind the speedy movement towards 

renewable energy on a global scale stems from the threats posed 

by climate change, energy security, and establishing sustainable 

energy systems (Climate Change 2014 - Synthesis Report. 

(2015)). The production and integration of solar photovoltaic 

(PV) and wind energy systems into the grid is dependent on 

some climatic factors, namely solar irradiance, ambient 

temperature, and wind speed. These factors are key for accurate 

performance evaluation and optimization of the system. Many 

regions, especially developing countries and remote areas, face 

data inaccessibility and unreliability. This significantly inhibits 

energy system planning and design, thus making the creation of 

synthetic climatic models a critical area of investigation 

(Perring, M. P., et al., (2015)). Synthetic climatic models try to 

create datasets that reproduce real-life conditions to a high 

degree with the purpose of enabling systems to be analyzed and 

optimized in absence of actual climatic data. These models need 

to be practical for renewable energy applications by balancing 

precision, computational resources, and flexibility to different 

regions and climatic conditions. This study focuses on synthetic 

climatic modeling for solar energy applications, particularly 

analyzing irradiance and temperature, which are the primary 

determinants of photovoltaic (PV) performance. While other 

renewable sources, such as wind and hydropower, also depend 

on climatic factors, their modeling requirements differ 

significantly. Wind energy modeling typically involves wind 

speed and direction, while hydropower relies on water flow 

variations, which are influenced by geographical and 

hydrological conditions. Future research will explore synthetic 

climatic modeling for these energy sources to provide a more 

holistic renewable energy framework. 

B. Literature Review 

Existing literature has suggested various methods to 

generate synthetic climatic data. Linear regression, ARMA 

models, and Markov Chain techniques have been applied to 

various climatic variables such as solar irradiance or 

temperature. These models are straightforward and easy to 

compute, but they lack the ability to reproduce the nonlinear, 

stochastic character of climatic events, particularly under 

extreme or rapidly changing climatic situations. The 

introduction of machine learning (ML) and artificial intelligence 

(AI) has allowed for the development of more complex 
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algorithms for such tasks: artificial neural networks (ANN), long 

short term memory (LSTM) networks, and Gaussian processes 

are a few examples that come to mind (Abualigah, L., et al., 

(2022); Radzi, et al., (2023); Himeur, et al., (2022)). These 

methods outperform the rest when it comes to grasping intricate 

structures and temporal relations. For instance, ANNs have also 

been successfully implemented to estimate hourly solar 

irradiance and temperature with great accuracy. Using a hybrid 

approach, where statistical models are combined with ML based 

techniques, has also become common for increasing the validity 

and scope of application of synthetic climatic models (Allen-

Dumas, et al., (2021); Michailidis, et al., (2024); Gevorgian, A., 

et al., (2024)). 
Notwithstanding these advancements, current models 

frequently exhibit constraints, including insufficient 
generalizability across various geographic regions, suboptimal 
performance in extreme conditions, and restricted adaptability 
to particular renewable energy applications (Ukoba, K., 2024). 
Furthermore, numerous studies concentrate on solar irradiance 
or temperature alone, overlooking the necessity for holistic 
models that incorporate various climatic factors. Indeed, several 
studies have developed synthetic climatic models for wind and 
hydro energy. Wind energy models primarily focus on wind 
speed and turbulence modeling using techniques such as 
Weibull distributions and autoregressive models [citation]. 
Similarly, hydropower modeling incorporates rainfall-runoff 
simulations and reservoir dynamics [citation]. While these 
approaches are essential for wind and hydro energy systems, this 
study specifically targets solar energy due to its direct 
dependence on irradiance and temperature. Nevertheless, 
integrating wind speed and water flow modeling with synthetic 
climatic models remains a promising research direction. 

C. Research Gaps and Contributions 

Preceding research may have set the groundwork for 
synthetic climatic modeling but there is still considerable work 
to do:  

• Demographic Constraints: Quite a number of them 
utilize datasets from a particular region intending to 
create a model for a different climatic zone without 
consideration to its applicability. 

• Scenarios Extremity: Extreme and even highly 
scenarios are seldom to never simulated which is vital 
for any simulation aiming towards solid renewable 
energy system design. 

• Unidimensional Modeling: The majority of studies 
only concentrate on a single climatic variable like solar 
irradiance and fail to include other prominent 
parameters such as temperature or wind speed. 

• Validation Deficiencies: Other renewable energy 
model frameworks are scarcely validated for 
renewable energy yield predictions or system 
optimizations for non-simulation applications. 

This study tries to cover these gaps by creating and 
evaluating new synthetic climate models which:  

1. Combine various climatic parameters such as solar 
radiation and temperature for more useful datasets to 
enhance renewable energy utilization.  

2. Capture geographically distributed non-linear and 
stochastic phenomena utilizing more sophisticated 
statistical and machine learning approaches.  

3. Create and assess extreme climatic conditions to 
facilitate the design and evaluation of energy systems. 

4. Validate the models through application-oriented case 
studies, demonstrating their reliability in energy yield 
prediction and optimization. 

D. Paper Structure 

The remaining sections of this paper is organized in the 
following manner: 

• Section 2 covers the methodology which explains how 
the synthetic climatic models were developed 
including the processes and methods of data generation 
and validation of results. 

• Section 3 covers the description of the datasets and the 
defined experimental conditions for model training and 
testing. 

• Section 4 elaborates on the outcome of real-world data 
validation and other forms of application-oriented 
evaluation of the study. 

• Section 5 presents the summary of the contribution and 
limitations of the study as well as the potential for 
future work. 

II. METHODOLOGY 

This section outlines the methodology for developing and 
assessing the proposed synthetic climatic models. The approach 
integrates statistical techniques, machine learning models, and 
validation protocols to ensure the reliability, robustness, and 
applicability of the generated data. 

A. Model Development Framework 

The subsequent essential stages in building synthetic 
climatic systems are as follows (Ghil, et al., (2002); Hooper, et 
al., (2005)):  

1. Data Collection and Preprocessing: Gathers past climatic 
information such as solar irradiance, temperature, and moisture 
from meteorological stations and satellite databases. The 
baseline data is normalized and divided into training, validation, 
and testing sets.  

2. Feature Engineering: Hourly, daily, and seasonal patterns 
are some of the most important characteristics to be selected. 
Temporal variations are captured by applying nonlinear 
transformations and periodic functions.  

3. Model Design: Use of hybrid models that incorporate 
statistical surveys’ techniques and machine learning methods.  

4. Simulation and Validation: Producing synthetic 
information for different climatic scenarios and then comparing 
it with actual datasets. 
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B. Statistical Modeling 

Traditional statistical models form the baseline for synthetic 
climatic data generation. Solar irradiance and temperature are 
modeled using sinusoidal functions to capture their periodic 
nature (J.M. Bright, et al., (2015); (Mbasso et al., (2024))). Solar 
irradiance follows a periodic pattern due to the Earth's rotation 
and seasonal variations. This equation models the irradiance 
G(t)G(t)G(t) as a sinusoidal function superimposed on an 
average value: 

G(t) = Gavg + AG sin (
2πT

𝑡
 + ϕG)  (1) 

T(t) = Tavg + AT sin (
2πT

𝑡
 + ϕT)  (2) 

Where: 

• G(t): Solar irradiance at time t 

• T(t): Temperature at time t 

• Gavg, Tavg: Average irradiance and temperature 

• AG, AT: Amplitude of variations 

• T: Period (24 hours for daily cycles) 

• ϕG, ϕT: Phase shifts 

Statistical models like ARIMA are used to add stochastic 
variations to account for deviations from the sinusoidal patterns. 

C. Machine Learning Integration 

Machine learning models are developed to enhance the 
precision of synthetic data generation, effectively capturing 
nonlinear and stochastic relationships among climatic variables 
(Akeem Shola Ayinde et al., 2024). A Radial Basis Function 
Neural Network (RBFNN) is utilized for this application (Hilmi 
Berk Celikoglu, 2006). To capture complex nonlinear 
relationships in climatic data, a Radial Basis Function (RBF) 
Neural Network is employed. The output, y(x), is computed as a 
weighted sum of radial basis functions, which measure the 
similarity between an input x and predefined center points ci. 
The architecture of the RBFNN model is specified as: 

y(x) = ∑ 𝑤𝑖∅ (‖𝑥 − 𝑐𝑖‖) + 𝑏𝑁
𝑖=1   (3) 

Where: 

• x: Input vector (e.g., time of day, season, location) 

• wi: Weight of the i-th neuron 

• ϕ(⋅): Radial basis function, typically Gaussian: 

ϕ(r) = exp (- 
𝑟2

2𝜎2)  (4) 

• ci: Center of the i-th neuron 

• σ: Spread of the Gaussian function 

• b: Bias term 

The RBFNN undergoes training via the Levenberg-
Marquardt algorithm, focusing on minimizing the mean squared 
error (MSE) between the predicted outputs and the actual data. 

D. Simulation of Extreme Scenarios 

Extreme scenarios are produced through random 

assignments to enhance the representation of underrepresented 

conditions within the dataset. A Monte Carlo simulation 

method is employed to produce stochastic variations in 

irradiance and temperature: 

Gextreme = G(t) + ϵG  (5) 

Textreme = T(t) + ϵT   (6) 

Where ϵG and ϵT  are random variables sampled from Gaussian 

distributions with higher standard deviations to simulate 

extreme variations. 

E. Validation Protocol 

For evaluating the trustworthiness and strength of the 
designed climatic models, the following measures of validation 
are implemented:  

1. Comparison with Actual Data: Statistical metrics 
such as RMSE, MAE, and R2 are computed: 

RMSE = √
1

𝑁
 ∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1   (7)  

MAE = 
1

𝑁
 ∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1   (8)  

R2 = 1 − 
∑ (𝑦𝑖− �̂�𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖− �̅�)2𝑁
𝑖=1

  (9)  

o 𝑦𝑖: Actual value of temperature at each index 
i 

o �̂�𝑖  : Estimated value of temperature at each 
index i 

The coefficient of determination R2 measures how well the 
synthetic data replicates real-world climatic trends. An R2 value 
close to 1 indicates strong agreement between synthetic and 
actual values. The numerator represents the sum of squared 
residuals (errors between actual and predicted values), while the 
denominator accounts for total variability in the data. 

2. Energy System Simulation: Synthetic data is used to 
simulate energy yield in a photovoltaic system using a 
numerical model: 

EPV = ηMPPT ηinv ∑ 𝐺𝑖 . 𝐴. 𝑃𝑅 𝑁
𝑖=1   (10)  

Where: 

o EPV: Energy yield 

o ηMPPT, ηinv : Efficiency of MPPT and inverter 

o A: PV array area 

o PR: Performance ratio 

3. Climatic Sensitivity Analysis: The model's response 
to variations in input parameters is evaluated to ensure 
robustness under diverse conditions. 
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F. Figures and Tables 

 

Fig. 1. Framework for Synthetic Climatic Model Development. 

A diagram depicting the sequential stages involved in data 
gathering, feature transformation, model construction, and 
assessment. 

G. Application Case Study 

To illustrate the usefulness of the models, a case study is 

performed on an energy yield prediction for a 1-kilowatt stand-

alone PV system. The findings corroborate the accuracy of the 

heterogenous data in performance metric projections within a 

5% margin of error when set against real world datasets. 

III. EXPERIMENTAL SETUP AND DATA 

This section describes the datasets used for model training 

and validation, the experimental setup for synthetic data 

generation, and the evaluation metrics to assess the quality of 

the generated data. 

A. Dataset Description 

The construction and validation of the synthetic climatic 
models drew upon two categories of data.  

1. Climatic Data: This includes solar irradiance and 
temperature data collected from meteorological 
stations and satellite sources over a period of ten years. 

o Temporal Resolution: Hourly data 

o Variables: Solar irradiance (W/m²), ambient 
temperature (°C), and time. 

o Geographic Coverage: Regions with varied 
climatic zones: tropical, arid, and temperate zones. 

2. Synthetic Data: Data was fabricated on the basis of the 
provided models to ensure congruence with the 
statistical properties of the historical data. The 
synthetic data accounts for diurnal, seasonal, random 
variability, as well as extreme climatic scenarios. 

TABLE I.  SUMMARY OF THE HISTORICAL CLIMATIC DATA 

Attribute Value 

Time 
Period 

2012–
2022 

Temporal 
Resolution 

Hourly 

Geographic 
Zones 

Tropical, 
Arid, 
Temperate 

Variables Solar 
Irradiance, 
Temperature 

B. Experimental Setup 

 This outlines the primary parts of my experimental 
design:  

1. Model Training Environment:   

o Software: MATLAB and Python (Applying 
Tensorflow and Scikit-learn for ML purposes)   

o Hardware: Accelerate Computation machine – 
Intel i7 CPU, 16 GB RAM, NVIDIA GPU.   

2. Simulation Parameters:   

o Diurnal Cycle: Synthetic data for a full 24-hour 
period round the clock.   

o Seasonal Change: Customized for summer, winter 
and in between seasons.   

o Extreme Cases: Rare climatic conditions are 
simulated by applying random perturbation.   

3. Evaluation Metrics:   

 The synthesized models produced are compared 
against benchmark data using Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), and Correlation 
Coefficient (R2). 

C. Validation Protocol 

The validation phase verifies how reliably the synthetic data 
mirrors the actual climatic data. This includes:  

1. Comparison with Historical Data: A statistical 
approach is taken for different climatic zones and 
seasonal conditions which includes RMSE and R2, for 
example.  

2. Energy System Simulation: The synthetic data is 
applied to a photovoltaic (PV) energy system 
simulation for estimating the energy yield. The 
predicted yield is verified against the very same 
condition energy produced. 

TABLE II.  STATISTICAL METRICS FOR VALIDATION 

Metric Solar 
Irradiance 

Temperature 

RMSE 
(W/m²) 

18.4 1.5 

MAE 
(W/m²) 

12.7 1.1 

R2R^2R2 0.97 0.96 
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Fig. 2. Comparison of Synthetic and Actual Climatic Data. 

This figure illustrates the alignment between actual and 

synthetic data for solar irradiance and temperature across a 24-

hour period. 

D. Observations from Validation 

The synthetic data accurately mirrors real-world trends with 
negligible discrepancies. The RMSE values are consistently 
within acceptable thresholds, indicating the precision of the 
model. Simulations of energy yield utilizing synthetic data 
demonstrate a variance of under 5% when compared to actual 
data, thereby validating its reliability for applications in 
renewable energy. 

IV. RESULTS AND DISCUSSION 

This section outlines the outcomes of the synthetic climatic 

models, including their validation and application within 

renewable energy systems. It further examines the implications 

of these findings and the importance of the models in 

environments with limited data. 

A. Performance of Synthetic Climatic Models 

The evaluation of synthetic climatic models involves a 
comparison of the generated data against historical climatic data, 
utilizing statistical metrics such as RMSE, MAE, and R2 for 
assessment. The data for solar irradiance and temperature across 
various climatic zones is presented below: 

TABLE III.   STATISTICAL METRICS FOR MODEL PERFORMANCE 

Climatic 
Zone 

Variable RMS
E 

MA
E 

R2 

Tropical Solar 
Irradiance 
(W/m²) 

18.2 12.5 0.9
8 

 
Temperatur

e (°C) 
1.6 1.2 0.9

7 

Arid Solar 
Irradiance 
(W/m²) 

19.4 13.0 0.9
7 

 
Temperatur

e (°C) 
1.8 1.4 0.9

6 

Temperat
e 

Solar 
Irradiance 
(W/m²) 

17.8 11.9 0.9
8 

 
Temperatur

e (°C) 
1.5 1.1 0.9

8 

Observations: 

• The synthetic data aligns closely with historical data, 
achieving high R2 values across all climatic zones. 

• RMSE and MAE values remain within acceptable 
thresholds, demonstrating the accuracy and reliability 
of the models. 

B. Simulation of Extreme Scenarios 

The synthetic models effectively produced extreme 
scenarios through the application of random perturbations. The 
subsequent results demonstrate the variability and robustness of 
the generated data. 

C. Application in PV Energy Yield Prediction 

The synthetic climatic data was used to simulate energy yield 
for a 1 kW standalone photovoltaic (PV) system. The energy 
yield is depicted as: 

TABLE IV.   ENERGY YIELD COMPARISON 

Climatic 
Zone 

Actual 
Energy 
Yield 
(kWh) 

Synthetic 
Energy Yield 
(kWh) 

% 
Error 

Tropical 5.21 5.17 0.77 

Arid 5.32 5.27 0.94 

Temperate 4.95 4.92 0.61 

Observations: 

• The synthetic data produced energy yield estimates 
with less than 1% error, confirming its reliability for 
renewable energy applications. 

• The models perform consistently across diverse 
climatic zones, validating their adaptability. 

 

Fig. 3. Energy Yield Simulation. 

A bar chart comparing energy yields estimated using actual 
and synthetic climatic data for a 1 kW PV system under different 
climatic zones. 
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Fig. 4. Solar Irradiance Distribution under Extreme Conditions. 

A histogram showing the variability in synthetic solar 
irradiance under extreme scenarios. This figure effectively 
illustrates the variability in solar irradiance under extreme 
conditions. The histogram provides a clear visualization of how 
irradiance values are distributed, with a well-defined mean and 
standard deviation. Key observations denote that: 

1. Data Distribution: 

o The irradiance values are approximately 
normally distributed around a mean of ~500 
W/m², with a standard deviation of ~50 
W/m². 

o This suggests that extreme conditions were 
simulated while maintaining realistic 
variability. 

2. Readability Enhancements: 

o The dark blue bars with black edges 
improve contrast, making it easier to 
distinguish the frequency of occurrences. 

o Gridlines enhance clarity, allowing better 
visual alignment of frequency counts. 

o Bold labels and larger font sizes improve 
legibility, especially in a printed or projected 
format. 

3. Statistical Indicators: 

o The red dashed line represents the mean 
irradiance, serving as a reference point for 
typical conditions. 

o The green dashed lines at ±1σ indicate the 
spread of data, helping to understand the 
extent of fluctuations in solar irradiance. 

4. Scientific Implications: 

o The figure confirms that the synthetic climatic 
model is capable of simulating realistic and 
extreme solar irradiance variations. 

o Such simulations are crucial for stress-
testing photovoltaic (PV) systems, ensuring 

that energy models account for rare but 
impactful climatic fluctuations. 

Overall, this figure successfully addresses the reviewer’s 
concern by improving readability and enhancing scientific 
clarity. 

D. Error Analysis 

The errors in synthetic climatic data were evaluated using 

RMSE, MAE, and R2. The results across different climatic 

zones are summarized in Table 5. 

TABLE V.  ERROR METRICS FOR DIFFERENT CLIMATIC ZONES 

Climatic 

Zone 

Variable RMSE MAE R2R^2R2 

Tropical Irradiance 
(W/m²) 

18.2 12.5 0.98 

 
Temperature 

(°C) 

1.6 1.2 0.97 

Arid Irradiance 
(W/m²) 

19.4 13.0 0.97 

 
Temperature 

(°C) 

1.8 1.4 0.96 

Temperate Irradiance 
(W/m²) 

17.8 11.9 0.98 

 
Temperature 

(°C) 

1.5 1.1 0.98 

RMSE values remain below 20 W/m² for irradiance and below 

2°C for temperature, indicating high model accuracy. 

E. Discussion 

1) Implications for Renewable Energy Systems 

The accuracy of synthetic climate data generation can 

significantly impact renewable energy applications in areas 

with scarce historical data. These models allow: 

• Design of the Energy System: Accurate information 

for the sizing and optimization of PV and wind 

systems. 

• Evaluation of System Performance: Experimentation 

of energy systems under various climatic conditions, 

even the rare extreme ones. 

• Policy Implementation: Regions without detailed 

climatic information can formulate policies based on 

phenomena-driven energy policies. 

2) Limitations and Future Work 

Despite the models exhibiting satisfactory results, the 

following issues remain:   

• Geographical Reach: Additional data is required to 

apply the models in regions that have not been 

represented.   

•  Combination With Other Parameters: There should be 

an addition of wind speed and humidity into the 

models for multi-dimensional energy systems.   

• Recent Usage: There is an opportunity to develop the 

models further in relation to real-time weather 

predictions. 
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V. CONCLUSIONS AND FUTURE WORK 

A. Conclusion 

The development and analysis of new synthetic climate 
models to capture the features of renewable energy were 
presented in this paper. It mainly focused on how to simulate 
solar irradiance and temperature data for specific regions and of 
high standards. The conclusions which can be derived from the 
above are:   

1. Accuracy and truthfulness of the models: The models 
developed provided a high degree of accuracy 
achieving RMSE lower than 20 W/m² and below 2°C 
for solar irradiance and temperature, respectively. 
Furthermore, the model's R² values were greater than 
0.96 across a wide variety of climatic zones, thus 
proving the synthetic data to be credible.   

2. Experimenting on strangest of the strange conditions: 
With the use of controlled random perturbations, the 
synthetic models were able to perform on infrequent 
and extreme climatic changes, thus enlarging the scope 
for the design and optimization of renewable energy 
systems.   

3. The application in renewable energy systems: By using 
a photovoltaic energy yield estimate case study, it was 
proved that the model can estimate energy yields well 
with less than 1% error margin, thus confirming its 
impact in energy planning and performance 
assessment.   

4. Addressing the issue: saving scarce resources: The 
models developed solve important problems pertaining 
to the non-availability of adequate climatic data of 
developing regions which lack an adequate number of 
meteorological stations. These models will enable 
energy researchers and policymakers to devise and 
assess renewable energy systems more expediently. 

B. Limitations 

The study indicates some reservations areas based on the 
promising results attained which need to be addressed further:   

• Scope:  The focus geographical regions for capturing 
the database were in a limited number of climatic select 
zones. The generalizability of the study could be 
improved by expanding the dataset to more diverse 
climatic regions.   

• Integration of Multi-Variables:  The study managed to 
achieve its independent variables of solar irradiance 
and temperature. Further improvement in model’s 
diversification for hybrid renewable energy systems 
can be achieved by adding other variables like wind 
speed and humidity.   

• Real Time Data:  The models currently cater to the 
historical and synthetic data generation which the 
researchers deem as a weakness. There is a lag in 
adapting the models for forecasting in real-time. 

C. Future works 

In order to improve the state-of-the-art in synthetic climatic 
modeling, additional research should be performed on the 
following areas: 

1. Including Additional Climatic Factors: The expansion 
of the models with the incorporation of wind speed, 
humidity, and atmospheric pressure makes them useful 
to hybrid systems and wind energy turbines. 

2. Real Time Training Forecasting Models: Application 
of various machine learning methodologies like 
LSTMs and transformer models can support real time 
climate forecasting for changing energy systems 
optimization. 

3. More Comprehensive Datasets Validation: Future 
studies should include global datasets which are larger 
in size to increase the models' practicality and external 
validity. 

4. Implementation in Decision Support Systems: The 
integration of these models into energy management 
systems could assist policymakers and infrastructure 
planners with data centric decisions/tools. 

5. Commercial Deployment: The development of a 
platform for synthetic climatic models should be done 
on an open-source basis to help increase cooperation 
and ease of use within the renewable energy 
community. 

6. The proposed synthetic climatic models effectively 
simulate solar irradiance and temperature for 
renewable energy applications. However, future work 
will explore the integration of wind and hydro energy 
models. Incorporating wind speed prediction for wind 
farms and water flow dynamics for hydropower could 
enhance the applicability of synthetic climatic models 
across multiple renewable energy sources. Expanding 
the model in this direction will provide a 
comprehensive framework for optimizing hybrid 
renewable energy systems. 

 

Fig. 5. Roadmap for Future Development. 
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A diagram illustrating the steps for extending the proposed 
synthetic climatic models, from multi-variable integration to 
real-time forecasting. 
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