
 Tiako P.F. (ed) Automated Systems, Data, and Sustainable Computing. Chronicle of Computing. OkIP.

 © 2022 Oklahoma International Publishing https://doi.org/10.55432/978-1-6692-0001-7_5

23

Initial GPU Optimization of Template Modeling Score (TM-score)

Hannah Johnson1, Armon White2, Yogesh Kale3*, Elijah MacCarthy1*

1, 2, 1*Departments of Computer Science and Mathematics, Lane College, Jackson TN, 38301
3*Department of Computational Science and Engineering, NC A&T State University

1601 E Market St, Greensboro NC, 27411

ABSTRACT

Accuracy in the prediction of protein structures is key in

understanding the biological functions of different proteins.

Numerous measures of similarity tools for protein structures have

been developed over the years, and these include Root Mean Square

Deviation (RMSD), as well as Template Modeling Score (TM-

score). While RMSD is influenced by the length of the protein and

therefore the similarity between superimposed models can be

affected by divergent loops in the models, TM-score is rather a

robust and a more accurate method. TM-score, however, is much

slower than RMSD in terms of calculations for the optimal

superimposed model. Here, we present initial optimization work on

GPU-TM-score, a GPU accelerated Template Modeling Score for

fast and accurate measuring of similarity between protein structures.

Our optimization is based on OpenACC parallelization and

performance analysis of bottleneck regions and the KABSCH

algorithm for the calculation of optimal superimposition within

parallel architectures. Our initial results indicate an average 3.14×

speedup compared to original TM-score on a benchmark set of 20

protein structures. This speedup is recorded on an Nvidia Volta

V100 GPU compared to an AMD EPYC 7742 64-core processor.

Keywords: GPU, Optimization, OpenACC, Protein Structure, TM-

score.

I. INTRODUCTION

The accurate comparison of predicted protein structures

plays an important role not only in protein structure

modeling, but also in branches of structural biology such as

protein folding classifications (Yang & Jeffrey, 2005) and

structure-based protein function annotation (Ling-Hong &

Ram, 2012; Yang & Jeffrey, 2005; MacCarthy, Perry, & KC,

2019). These areas cover almost all branches of

contemporary structural biology (Yang & Jeffrey, 2005) and

this has become possible due to the increase in the number of

solved protein structures in the Protein Data Bank (PDB).

Though the usage of protein structure comparison tools has

become popular, the speed and accuracy of these algorithms

is very essential in keeping up with the ever-increasing gap

between known protein structures and sequences in the

UNIPROT protein library (MacCarthy, Perry, & KC, 2019;

MacCarthy, 2020; KC, 2017)

Root Mean Square Deviation (RMSD) is one of the

earliest, simplest and most commonly used metric for

comparing protein structures (Kabsch, 1978; Yang & Jeffrey,

2005). When two protein structures are superimposed, the

measure of the average distance between their atoms is

referred to as Root Mean Square Deviation (RMSD)

(MacCarthy, 2020). It measures the root-mean-square

distance between corresponding residues after an optimal

rotation of one structure to another (Yang & Jeffrey, 2005).

This measure of similarity between two superimposed atomic

coordinates is quantitative and represented in equation (1)

below. Though RMSD is fast in terms of speed, it weights the

distances between all residue pairs equally, thus, a small

number of local structural deviations could result in a high

RMSD, even when the global topologies of the compared

structures are similar (Ling-Hong & Ram, 2012). Also,

RMSD is not only dependent on the overall goodness of fit

but also dependent on the length of compared structures,

which leaves the absolute magnitude of RMSD meaningless

(Yang & Jeffrey, 2005).

As a result of the flaws of RMSD, several other algorithms

have been developed. These methods are based off the RMSD

and compute transformations that superimpose

corresponding atoms from one structure onto another

structure by reducing the root-mean-squared deviation

(RMSD) between the coordinates of superimposed structures

(Ling-Hong & Ram, 2012). Some of these methods include

Template Modeling Score (TM-score), Global Distance Test

(GDT) and the Longest Continuous Segment (LCS)

(MacCarthy, 2020).

TM-score (Yang & Jeffrey, 2005) which is represented in

equation (2) below uses a variation of Levitt–Gerstein’s (LG)

metric, (Levitt & Gerstein, 1998) that provides a length

independent measure and limits the impact of divergent pairs

of atoms in superimposed structures. TM-score is sensitive to

global topology because it weights small distances stronger

than larger ones.
Also, TM-score is normalized in a way that the magnitude

of scores of random structures is not dependent on the size of
the protein. Thus, an average pair of randomly related
structures have the value of 0.17 (Yang & Jeffrey, 2005). The
TM-score metric works by sampling different subsets of

* Corresponding author E-mail: emaccarthy@lanecollege.edu

24

atoms and using the Kabsch algorithm in guiding their
superposition while evaluating the LG score over the entire
protein. The optimal superposition can then be obtained from
the several sampled atom subsets. Because of the numerous
local superpositions that must be sampled, the TM-score
algorithm is much slower than the calculations from the
RMSD algorithm.

 (1)

𝑑𝑖 is the distance between the two atoms in the i-th pair an L

is the number of pairs of equivalent atoms.

(2)

L is the number of residues of the query sequence, 𝐿ali is the

number of aligned residues in a threading alignment. When L

and 𝐿ali are identical, then it implies the model is full length.

𝑑i is the distance of the ith 𝐶α pair between model and native

after superposition, and 𝑑0 = 1.24√𝑁 − 15
3

− 1.8.

II. PROPOSED INNOVATION

Our proposed innovation to TM-score is to port bottleneck

regions of the algorithm to the GPU using OpenACC. Though

some optimization work on TM-score has been done in the

past (Hung, 2012), this targeted the porting from an OpenCL

approach. There is little or no work done with regards to

porting TM-score to the GPU using OpenACC. Thus, our

proposed innovation optimizes TM-score by using OpenACC

and ensures portability of GPU TM-score. This portability of

GPU TM-score refers to providing users the flexibility of

using GPU TM-score with any kind of accelerators, unlike

other GPU optimizations that tie ported applications to

specific architectures (Ford, 2009; Preis, Virnau, & Paul,

2009; Stantchev & Dorland, 2008; Gross & Janke, 2011).

From our performance analysis of the sequential

algorithm, we noticed that the KABSCH method for

calculating optimal superimposed models in the TM-score

algorithm is the most expensive. This accounts for close to

75% of the total computational time. Our focus therefore is

porting this region of the application to the GPU and

optimizing it for performance gain. We propose the usage of

OpenACC parallel and kernel regions to port hotspots within

this section of code to the GPU. Since the device cannot

access the host memory, our main task in this parallelization

is to optimize data transfers so we can begin seeing the effect

of our OpenACC acceleration on the speed.

III. METHODS

A. GPU and OpenACC Application Programming Interface

Recent generations of GPUs use a unified architecture

that is much suitable for scientific computing (Ford, 2009)

and these are referred to as General Purpose GPUs (GPGPU).

The general-purpose GPUs are used extensively in scientific

computing to optimize applications that are suitable for

parallel architectures. These GPUs are designed for compute-

intensive, highly parallel computations. By virtue of this, the

TM-score algorithm is a good candidate for porting to the

GPU since its calculations are compute-intensive.

The general-purpose GPU operations follow the

Single Instruction Multiple Data (SIMD) paradigm, and it

comprises several streaming multiprocessors. The GPU uses

these streaming multiprocessors to achieve high throughput

which is obtained through the local caches and on-chip

memory, thus, reducing bandwidth to external memory.

There are numerous transistors on the GPU compared to CPU

and these are for the purpose of data processing rather than

caching and flow control. This therefore results in the

compute-intensive and highly parallel computations of the

GPU (Block, Virnau, & Preis, 2010). Since the GPU

operation follows the SIMD paradigm, it is more suitable for

tasks that can be expressed as data-parallel computations. By

so doing, data elements are mapped to the numerous parallel

processing threads. There are thousands of threads on the

GPU and these are put into several batches/groups. In CUDA,

these group of threads are called thread block and in

OpenACC, they are referred to as a gang.

Open Accelerators (OpenACC) are a directive-based

Application Programming Interface (API) that optimizes and

accelerates work on GPUs. OpenACC enables developers to

write applications that offload codes with their associated

runtime data to GPUs from a host CPU. This is accomplished

by using preprocessor directives that work like the directives

in OpenMP. This prevents writing low level functions that

virtually change the original code.

B. OpenACC Implementation

Since the TM-score algorithm contains the KABSCH method

which is compute intensive, we port this region and other

bottleneck regions of code to the GPU using OpenACC.

Within this algorithm is the calculation of the optimal rotation

matrix as well as the covariance matrix. We split these

computations within the Kabsch algorithm on the GPU by

assigning each to a parallel region. By a parallel region, we

mean a gang of thread blocks.

We therefore insert OpenACC parallel directives that map

these regions of code to a gang of thread blocks executed in

parallel. This ensures a simultaneous execution of the

different regions. We also optimize the number of thread

blocks launched based on the amount of work to be

completed in each region. This way, not too many or too few

threads are launched, rather, an optimized number to ensure

a speedup. Also, the device (GPU) cannot access the host

memory, thus, we move data associated with these regions to

the GPU to ensure calculations are completed accurately.

25

The data movements are accomplished by using OpenACC

data regions in moving required data unto and from the

device. These data transfers introduce an enormous overhead

challenge within the optimization. From our initial

optimization, the enormous data transfers account for 73% of

the total GPU time. It is necessary therefore to optimize these

data transfers so we can begin seeing an influence on the

computational time.

We accomplish this by merging several small data copies

into single copies. Many small data copies happening at

different times take away from time that is supposed to be

used for computations. Thus, merging many small copies into

larger ones enables the device to be devoted to compute-

intensive operations. Also, results that are not immediately

required on the host after calculations on the device are kept

on the device without being transferred to the CPU. This way,

data movement time is split in half.

Also, regions that are not necessarily bottlenecks but

contain data that is needed on the GPU are moved to the

device to reduce data transfers. After optimizing data

transfers, we are able to reduce the data movement time to

27% of total GPU time.

IV. RESULTS

We present the results from our initial optimization efforts

in this section. An NVIDIA V100 GPU is used for the GPU

implementation whereas an AMD EPYC 7742 64-core

processor is used for sequential runs.

Fig. 1. GPU and CPU execution time of proteins of varying residue

length.

On a benchmark dataset of 20 proteins obtained from the

PDB, we record an initial average speedup of 3.14× as

presented in Tab. 1. Also, from Tab. I, the peak recorded

speed-up is 4.57× for residues within the range, 1001 - 2000.

In Fig. 1, we present the GPU and CPU execution times

against the residue lengths of protein structures being

compared. It can be observed that the speedup is more

pronounced as the residue length becomes larger. This is

presented vividly in Fig. 2 where the residue ranges are

plotted against the average execution times.

This in part is due to the fact that as residue lengths become

larger, it takes considerably longer for the computations to be

completed. Thus, the effect of the GPU optimization is much

realized at this point. This means the efficiency of the

optimization is clearly seen as the problem size becomes

larger.

Fig. 2. GPU and CPU Execution time of proteins of varying residue

length.

We have implemented an initial OpenACC optimized
GPU-TM-score algorithm which is currently 3.14× faster than
original TM-score. We hope to improve upon these results
after further targeted porting and optimization. This work
when completed, should help in comparing protein structures
a lot faster by using any kind of accelerators as OpenACC
works with all kinds of GPUs.

TABLE 1. Average Execution Time for Benchmark Data

Residue Range tcpu/s tgpu/s SpeedUp

401 - 500 0.55 (1) 0.33 1.67

501 - 600 0.715 (2) 0.305 2.34

601 - 700 0.86 (1) 0.35 2.46

701 - 800 1.25 (10) 0.411 3.04

801 - 900 1.53 (5) 0.458 3.34

1001 - 2000 2.88(1) 0.63 4.57

Average 1.298 0.414 3.14

V. FUTURE WORK

We aim to optimize the GPU-TM-score algorithm further
by targeting both the computations and the data transfers that
have been reduced currently to 27%. Though this optimization
is host-device memory bound, we are hoping to have the
average speedup improved.

ACKNOWLEDGMENT

The authors would like to thank Dr. Melanie Van Stry and
Dr. Aminah Gooch of Lane College for their input. This work

26

was supported in part by the NSF awards, HRD 2011938 and
DUE 1833960.

REFERENCES

Betancourt, M., & Skolnick, J. (2001). Universal similarity measure for
comparing protein structures. Biopolymers, 305–309.

Block, B., Virnau, P., & Preis, T. (2010). Multi-GPU accelerated multi-spin

Monte Carlo simulations of the 2D Ising model. Computer
Physics Communications, 1549-1556.

Ford, E. (2009). Parallel algorithm for solving Kepler’s equation on

Graphics Processing Units: Application to analysis of Doppler
exoplanet searches. New Astronomy, 406-412.

Gross, J., & Janke, W. &. (2011). Massively parallelized replica-exchange
simulations of polymers on GPUs. . Computer physics

communications., 1638-1644.

Hung, L. H. (2012). Accelerated protein structure comparison using TM-
score-GPU. Bioinformatics, 2191-2192.

Kabsch, W. (1978). A discussion of the solution for the best rotation to

relate two sets of vectors. Acta Crystallographica Section A:
Crystal Physics, Diffraction, Theoretical and General

Crystallography, 827 –828.

KC, D. (2017). Recent advances in sequence-based protein structure
prediction. Briefings in bioinformatics, 1021-1032.

Levitt, M., & Gerstein, M. (1998, May 26). A unified statistical framework

for sequence comparison and structure comparison. National
Academy of sciences, pp. 5913-5920.

Ling-Hong, H., & Ram, S. (2012). Accelerated protein structure
comparison using TM-score-GPU. Bioinformatics, 2191–2192.

MacCarthy, E. (2020, May). Gpu Parallelization of Replica Exchange

Monte Carlo Simulation and Application to Protein Structure
Prediction. In Doctoral dissertation, North Carolina

Agricultural and Technical State University. Greensboro:

Proquest.
MacCarthy, E., Perry, D., & KC, D. (2019). Advances in protein super-

secondary structure prediction and application to protein

structure prediction. In K. A, Protein supersecondary structures
(pp. 15-45). New York: Humana Press.

Murzin, A. G., Brenner, S. E., Hubbard, T., & & Chothia, C. (1995).

SCOP: a structural classification of proteins database for the
investigation of sequences and structures. . Journal of

Molecular Biology, 536 –540.

Preis, T., Virnau, P., & Paul, W. &. (2009). GPU accelerated Monte Carlo
simulation of the 2D and 3D Ising model. Journal of

Computational Physics., 4468-4477.

Stantchev, G., & Dorland, W. &. (2008). Fast parallel particle-to-grid
interpolation for plasma PIC simulations on the GPU. . Journal

of Parallel and Distributed Computing., 1339-1349.

Yang, Z., & Jeffrey, S. (2005). TM-align: a protein structure alignment
algorithm. Nucleic Acids Research, 2302–2309.

